IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920302385.html
   My bibliography  Save this article

Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies

Author

Listed:
  • Mishra, Sakshi
  • Anderson, Kate
  • Miller, Brian
  • Boyer, Kyle
  • Warren, Adam

Abstract

Microgrids are being increasing deployed to improve the operational flexibility, resilience, coordinated-energy management capabilities, self-adequacy, and increased reliability of power systems. This strong market growth is also driven by advances in power electronics, improved control systems, and the rapidly falling price and increased adoption of distributed energy generation technologies, like solar photovoltaics and storage. In the event of grid outages, microgrids can provide a backup source of power; providing resilience to the critical loads; however, this requires that the microgrid itself is resilient to physical and cyber threats. Building highly resilient microgrids requires a methodological assessment of potential threats, identification of vulnerabilities, and design of mitigation strategies. This paper provides a comprehensive review of threats, vulnerabilities, and mitigation strategies and develops a definition for microgrid resilience. The paper also develops a methodology for designing resilient microgrids by considering how microgrid designers and site owners evaluate threats, vulnerabilities, and consequences and choose the microgrid features required to address these threats under different situations.

Suggested Citation

  • Mishra, Sakshi & Anderson, Kate & Miller, Brian & Boyer, Kyle & Warren, Adam, 2020. "Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302385
    DOI: 10.1016/j.apenergy.2020.114726
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martínez Ceseña, Eduardo A. & Good, Nicholas & Syrri, Angeliki L.A. & Mancarella, Pierluigi, 2018. "Techno-economic and business case assessment of multi-energy microgrids with co-optimization of energy, reserve and reliability services," Applied Energy, Elsevier, vol. 210(C), pages 896-913.
    2. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    3. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    4. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    5. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    3. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    4. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Wu, Raphael & Sansavini, Giovanni, 2021. "Energy trilemma in active distribution network design: Balancing affordability, sustainability and security in optimization-based decision-making," Applied Energy, Elsevier, vol. 304(C).
    7. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    8. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    11. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. da Silva, Fellipe Sartori & Matelli, José Alexandre, 2021. "Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    14. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
    15. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    16. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    17. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    18. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    19. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    20. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.