IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1656-d756615.html
   My bibliography  Save this article

Opportunities for the Application of 3D Printing in the Critical Infrastructure System

Author

Listed:
  • Grzegorz Budzik

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 35-959 Rzeszow, Poland)

  • Krzysztof Tomaszewski

    (Faculty of Political Science and International Studies, University of Warsaw, 00-927 Warsaw, Poland)

  • Andrzej Soboń

    (National Security Faculty, War Studies University, 00-910 Warsaw, Poland)

Abstract

The present article presents an analysis of the potential application of 3D printing in the critical infrastructure system. An attempt has been made to develop case studies for selected critical infrastructure areas, particularly with reference to the area of energy supply. The need for 3D printing applications is identified based on expert research in the energy industry. It identifies the application schemes determined by the technical and logistical possibilities associated with 3D printing in its broadest sense. A review of additive technologies with a view to their application in selected phases of critical infrastructure operation, including in crisis situations, is also carried out. Furthermore, a methodology for incorporating 3D printing into the existing critical infrastructure system is proposed. As a result, the following research hypothesis is adopted: the use of 3D printing can be an important part of measures to ensure the full functionality and efficiency of critical infrastructures, particularly in crisis situations.

Suggested Citation

  • Grzegorz Budzik & Krzysztof Tomaszewski & Andrzej Soboń, 2022. "Opportunities for the Application of 3D Printing in the Critical Infrastructure System," Energies, MDPI, vol. 15(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1656-:d:756615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mitali Sarkar & Biswajit Sarkar & Muhammad Waqas Iqbal, 2018. "Effect of Energy and Failure Rate in a Multi-Item Smart Production System," Energies, MDPI, vol. 11(11), pages 1-21, October.
    2. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    3. N. Knofius & M. C. Heijden & A. Sleptchenko & W. H. M. Zijm, 2021. "Improving effectiveness of spare parts supply by additive manufacturing as dual sourcing option," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 189-221, March.
    4. Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
    5. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    6. Croce, Antonello Ignazio & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Sustainable mobility and energy resources: A quantitative assessment of transport services with electrical vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    2. Jing Liu & Wei Sun & Jinghao Yan, 2021. "Effect of P2G on Flexibility in Integrated Power-Natural Gas-Heating Energy Systems with Gas Storage," Energies, MDPI, vol. 14(1), pages 1-15, January.
    3. Jing Liu & Wei Sun & Gareth P. Harrison, 2019. "Optimal Low-Carbon Economic Environmental Dispatch of Hybrid Electricity-Natural Gas Energy Systems Considering P2G," Energies, MDPI, vol. 12(7), pages 1-17, April.
    4. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    5. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    6. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    7. Daniel Y. Mo & H. Y. Lam & Weikun Xu & G. T. S. Ho, 2020. "Design of Flexible Vehicle Scheduling Systems for Sustainable Paratransit Services," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    8. Taiba Zahid & Fouzia Gillani & Usman Ghafoor & Muhammad Raheel Bhutta, 2022. "Synchromodal Transportation Analysis of the One-Belt-One-Road Initiative Based on a Bi-Objective Mathematical Model," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    9. Henryk Łukowicz & Łukasz Bartela & Paweł Gładysz & Staffan Qvist, 2023. "Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology," Energies, MDPI, vol. 16(7), pages 1-25, March.
    10. Nicholas Preston & Azadeh Maroufmashat & Hassan Riaz & Sami Barbouti & Ushnik Mukherjee & Peter Tang & Javan Wang & Ali Elkamel & Michael Fowler, 2021. "An Economic, Environmental and Safety Analysis of Using Hydrogen Enriched Natural Gas (HENG) in Industrial Facilities," Energies, MDPI, vol. 14(9), pages 1-21, April.
    11. Jie Xing & Peng Wu, 2021. "Optimal Planning of Electricity-Natural Gas Coupling System Considering Power to Gas Facilities," Energies, MDPI, vol. 14(12), pages 1-19, June.
    12. Męczyński Michał & Ciesiółka Przemysław, 2022. "Regional Green Transition: Cases of Polish and Russian Regions," Quaestiones Geographicae, Sciendo, vol. 41(4), pages 165-177, December.
    13. Sean Walker & Suadd Al-Zakwani & Azadeh Maroufmashat & Michael Fowler & Ali Elkamel, 2020. "Multi-Criteria Examination of Power-to-Gas Pathways under Stochastic Preferences," Energies, MDPI, vol. 13(12), pages 1-18, June.
    14. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    15. Andreea-Ileana Zamfir & Elena Oana Croitoru & Cristina Burlacioiu & Cosmin Dobrin, 2022. "Renewable Energies: Economic and Energy Impact in the Context of Increasing the Share of Electric Cars in EU," Energies, MDPI, vol. 15(23), pages 1-19, November.
    16. Adrian Tantau & Greta Marilena Puscasu & Silvia Elena Cristache & Cristina Alpopi & Laurentiu Fratila & Daniel Moise & Georgeta Narcisa Ciobotar, 2022. "A Deep Understanding of Romanian Attitude and Perception Regarding Nuclear Energy as Green Investment Promoted by the European Green Deal," Energies, MDPI, vol. 16(1), pages 1-14, December.
    17. Hekimoğlu, Mustafa & Scheller-Wolf, Alan, 2023. "Dual sourcing models with stock-out dependent substitution," European Journal of Operational Research, Elsevier, vol. 311(2), pages 472-485.
    18. Rishabh Agarwal, 2022. "Economic Analysis of Renewable Power-to-Gas in Norway," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    19. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Rodrigo Gandia & Fabio Antonialli & Julia Oliveira & Joel Sugano & Isabelle Nicolaï & Izabela Cardoso Oliveira, 2021. "Willingness to use MaaS in a developing country," Post-Print hal-03687590, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1656-:d:756615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.