IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p732-d728651.html
   My bibliography  Save this article

Analysis of the Influence of Control Strategy and Heating Loads on the Performance of Hybrid Heat Pump Systems for Residential Buildings

Author

Listed:
  • Erica Roccatello

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy)

  • Alessandro Prada

    (Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Paolo Baggio

    (Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Marco Baratieri

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy)

Abstract

Air-to-water heat pumps (HPs) are widely installed in new buildings; however, they face performance degradation with high temperature emission systems, which is typical of existing buildings, or during domestic hot water (DHW) production. Hybrid systems (HSs), composed by air-to-water HPs and gas-fired boilers, can mitigate these issues by increasing the overall system efficiency. HS performance is strictly dependent on the configuration and control management of the system itself. Moreover, the building and heating plant also have a strong influence. This study presents an overview of the application of HSs that considers both space heating (SH) and DHW production, by comparing the primary energy (PE) consumption obtained by dynamic simulations. Different climates, building typologies, and DHW withdrawal profiles are used to extend the results’ validity. Additionally, several HS control strategies were implemented and compared. The results show a PE savings ranging from 5% to 22% depending on the control strategy and the external parameters applied in the simulation. The comparison of the control strategies shows that the most efficient strategies are the ones maximizing heat pump utilization. The dependence of PE savings of HS on COP values is highlighted, and a correlation is presented to provide designers with guidance on the applicability of HSs.

Suggested Citation

  • Erica Roccatello & Alessandro Prada & Paolo Baggio & Marco Baratieri, 2022. "Analysis of the Influence of Control Strategy and Heating Loads on the Performance of Hybrid Heat Pump Systems for Residential Buildings," Energies, MDPI, vol. 15(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:732-:d:728651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heinen, Steve & Burke, Daniel & O'Malley, Mark, 2016. "Electricity, gas, heat integration via residential hybrid heating technologies – An investment model assessment," Energy, Elsevier, vol. 109(C), pages 906-919.
    2. Zhang, Xi & Strbac, Goran & Teng, Fei & Djapic, Predrag, 2018. "Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study," Applied Energy, Elsevier, vol. 222(C), pages 79-91.
    3. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Cirone & Roberto Bruno & Piero Bevilacqua & Stefania Perrella & Natale Arcuri, 2022. "Techno-Economic Analysis of an Energy Community Based on PV and Electric Storage Systems in a Small Mountain Locality of South Italy: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    2. Fabian Wüllhorst & Christian Vering & Laura Maier & Dirk Müller, 2022. "Integration of Back-Up Heaters in Retrofit Heat Pump Systems: Which to Choose, Where to Place, and How to Control?," Energies, MDPI, vol. 15(19), pages 1-22, September.
    3. Daniel Neubert & Christian Glück & Julian Schnitzius & Armin Marko & Jeannette Wapler & Constanze Bongs & Clemens Felsmann, 2022. "Analysis of the Operation Characteristics of a Hybrid Heat Pump in an Existing Multifamily House Based on Field Test Data and Simulation," Energies, MDPI, vol. 15(15), pages 1-29, August.
    4. Omar Montero & Pauline Brischoux & Simon Callegari & Carolina Fraga & Matthias Rüetschi & Edouard Vionnet & Nicole Calame & Fabrice Rognon & Martin Patel & Pierre Hollmuller, 2022. "Large Air-to-Water Heat Pumps for Fuel-Boiler Substitution in Non-Retrofitted Multi-Family Buildings—Energy Performance, CO 2 Savings, and Lessons Learned in Actual Conditions of Use," Energies, MDPI, vol. 15(14), pages 1-29, July.
    5. Agata Ołtarzewska & Dorota Anna Krawczyk, 2022. "Analysis of the Influence of Selected Factors on Heating Costs and Pollutant Emissions in a Cold Climate Based on the Example of a Service Building Located in Bialystok," Energies, MDPI, vol. 15(23), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
    2. Sun, Mingyang & Djapic, Predrag & Aunedi, Marko & Pudjianto, Danny & Strbac, Goran, 2019. "Benefits of smart control of hybrid heat pumps: An analysis of field trial data," Applied Energy, Elsevier, vol. 247(C), pages 525-536.
    3. Haghi, Ehsan & Qadrdan, Meysam & Wu, Jianzhong & Jenkins, Nick & Fowler, Michael & Raahemifar, Kaamran, 2020. "An iterative approach for optimal decarbonization of electricity and heat supply systems in the Great Britain," Energy, Elsevier, vol. 201(C).
    4. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    5. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    6. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    7. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    8. Ling Cheng & Zesheng Yu & Shiyao Xia & Shixuan Li & Ye Li & Huan Zhang & Bin Li & Sirui Zhang & Zijian Liu & Wandong Zheng, 2022. "Evaluation and Optimization of heat Pump Combined District Heating System: A Case Study of China," Energies, MDPI, vol. 15(20), pages 1-24, October.
    9. Dengiz, Thomas & Jochem, Patrick, 2020. "Decentralized optimization approaches for using the load flexibility of electric heating devices," Energy, Elsevier, vol. 193(C).
    10. Zhang, Xi & Strbac, Goran & Teng, Fei & Djapic, Predrag, 2018. "Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study," Applied Energy, Elsevier, vol. 222(C), pages 79-91.
    11. Mathilde Fajardy & David Reiner, 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Working Papers EPGR2037, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Chen, Yizhong & He, Li & Li, Jing & Cheng, Xi & Lu, Hongwei, 2016. "An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, Elsevier, vol. 183(C), pages 969-983.
    13. Schifflechner, Christopher & Dawo, Fabian & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Thermodynamic comparison of direct supercritical CO2 and indirect brine-ORC concepts for geothermal combined heat and power generation," Renewable Energy, Elsevier, vol. 161(C), pages 1292-1302.
    14. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
    15. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    16. Marijanovic, Zorica & Theile, Philipp & Czock, Berit Hanna, 2022. "Value of short-term heating system flexibility – A case study for residential heat pumps on the German intraday market," Energy, Elsevier, vol. 249(C).
    17. De Mel, Ishanki & Bierkens, Floris & Liu, Xinyao & Leach, Matthew & Chitnis, Mona & Liu, Lirong & Short, Michael, 2023. "A decision-support framework for residential heating decarbonisation policymaking," Energy, Elsevier, vol. 268(C).
    18. Wang, Jidong & Liu, Jianxin & Li, Chenghao & Zhou, Yue & Wu, Jianzhong, 2020. "Optimal scheduling of gas and electricity consumption in a smart home with a hybrid gas boiler and electric heating system," Energy, Elsevier, vol. 204(C).
    19. Gerard Mor & Jordi Cipriano & Eloi Gabaldon & Benedetto Grillone & Mariano Tur & Daniel Chemisana, 2021. "Data-Driven Virtual Replication of Thermostatically Controlled Domestic Heating Systems," Energies, MDPI, vol. 14(17), pages 1-25, September.
    20. Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:732-:d:728651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.