IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1084-d740086.html
   My bibliography  Save this article

A Short Assessment of Renewable Energy for Optimal Sizing of 100% Renewable Energy Based Microgrids in Remote Islands of Developing Countries: A Case Study in Bangladesh

Author

Listed:
  • Homeyra Akter

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami 903-0213, Japan)

  • Harun Or Rashid Howlader

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami 903-0213, Japan)

  • Akito Nakadomari

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami 903-0213, Japan)

  • Md. Rashedul Islam

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami 903-0213, Japan)

  • Ahmed Y. Saber

    (ETAP R&D, Irvine, CA 92618, USA)

  • Tomonobu Senjyu

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami 903-0213, Japan)

Abstract

This study explores Bangladesh’s present energy condition, renewable energy (RE) possibilities and designs an optimal 100% RE-based off-grid power system for St. Martin’s Island, Bangladesh. The optimal size of a hybrid renewable microgrid based on photovoltaic (PV) cells, a battery energy storage system (BESS), fuel cells (FC), and an electrolysis plant (EP) is proposed. Advanced direct load control (ADLC) and rooftop PV meet the energy demand at the lowest cost, and profits are maximized by selling chemical products produced by seawater electrolysis. Four cases are explored with the mixed-integer linear programming (MILP) optimization technique using MATLAB® software to demonstrate the efficacy of the suggested power system. The system cost in case 1 is lower than in the other cases, but there is no chance of profiting. Cases 2, 3, and 4 have greater installation costs, which may be repaid in 8.17, 7.72, and 8.01 years, respectively, by the profits. Though the revenue in case 3 is 6.23% higher than in case 2 and and 3.85% higher than in case 4, case 4 is considered the most reliable power system, as it can meet the energy demand at the lowest cost while increasing profits and not putting a burden on customers.

Suggested Citation

  • Homeyra Akter & Harun Or Rashid Howlader & Akito Nakadomari & Md. Rashedul Islam & Ahmed Y. Saber & Tomonobu Senjyu, 2022. "A Short Assessment of Renewable Energy for Optimal Sizing of 100% Renewable Energy Based Microgrids in Remote Islands of Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(3), pages 1-30, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1084-:d:740086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikolakakis, Thomas & Chattopadhyay, Deb & Bazilian, Morgan, 2017. "A review of renewable investment and power system operational issues in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 650-658.
    2. Rajib Kanti DAS & Soman CHAKRABORTY, 2012. "Electricity Crisis And Load Management In Bangladesh," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 4(2), pages 54-67, June.
    3. Islam, Md. Tasbirul & Shahir, S.A. & Uddin, T.M. Iftakhar & Saifullah, A.Z.A, 2014. "Current energy scenario and future prospect of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1074-1088.
    4. Ahmed, Shamsuddin & Islam, Md Tasbirul & Karim, Mohd Aminul & Karim, Nissar Mohammad, 2014. "Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh," Renewable Energy, Elsevier, vol. 72(C), pages 223-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gulnar Gadirli & Agnieszka A. Pilarska & Jacek Dach & Krzysztof Pilarski & Alicja Kolasa-Więcek & Klaudia Borowiak, 2024. "Fundamentals, Operation and Global Prospects for the Development of Biogas Plants—A Review," Energies, MDPI, vol. 17(3), pages 1-26, January.
    2. Samina Alam & Kazi Sajedur Rahman & Md. Rokonuzzaman & P. Abdul Salam & Md. Sazal Miah & Narottam Das & Shahariar Chowdhury & Sittiporn Channumsin & Suwat Sreesawet & Manun Channumsin, 2022. "Selection of Waste to Energy Technologies for Municipal Solid Waste Management—Towards Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Maciej Żołądek & Alexandros Kafetzis & Rafał Figaj & Kyriakos Panopoulos, 2022. "Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    4. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    5. Md. Rashedul Islam & Homeyra Akter & Harun Or Rashid Howlader & Tomonobu Senjyu, 2022. "Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(17), pages 1-21, September.
    6. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    2. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Nusrat Chowdhury & Chowdhury Akram Hossain & Michela Longo & Wahiba Yaïci, 2020. "Feasibility and Cost Analysis of Photovoltaic-Biomass Hybrid Energy System in Off-Grid Areas of Bangladesh," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    4. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    5. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    6. Mohammad Ershadul Karim & Ridoan Karim & Md. Toriqul Islam & Firdaus Muhammad-Sukki & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2019. "Renewable Energy for Sustainable Growth and Development: An Evaluation of Law and Policy of Bangladesh," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    7. Abdul Hasib Siddique & Sumaiya Tasnim & Fahim Shahriyar & Mehedi Hasan & Khalid Rashid, 2021. "Renewable Energy Sector in Bangladesh: The Current Scenario, Challenges and the Role of IoT in Building a Smart Distribution Grid," Energies, MDPI, vol. 14(16), pages 1-24, August.
    8. Baul, T.K. & Datta, D. & Alam, A., 2018. "A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh," Energy Policy, Elsevier, vol. 114(C), pages 598-608.
    9. Abdul Hasib Siddique & Mehedi Hasan & Sharnali Islam & Khalid Rashid, 2021. "Prospective Smart Distribution Substation in Bangladesh: Modeling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    10. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    11. Hao Chen & Chi Kong Chyong & Jia-Ning Kang & Yi-Ming Wei, 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Working Papers EPRG 1819, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Barroco, Jose, 2021. "Designing financeable ancillary services revenue contracts in developing economies: Learnings from the Philippines," Energy Policy, Elsevier, vol. 152(C).
    13. Islam, KM Nazmul & Sarker, Tapan & Taghizadeh-Hesary, Farhad & Atri, Anashuwa Chowdhury & Alam, Mohammad Shafiul, 2021. "Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. M. A. Munjer & Md. Zahid Hasan & M. Khalid Hossain & Md. Ferdous Rahman, 2023. "The Obstruction and Advancement in Sustainable Energy Sector to Achieve SDG in Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    15. Jeslin Drusila Nesamalar, J. & Venkatesh, P. & Charles Raja, S., 2017. "The drive of renewable energy in Tamilnadu: Status, barriers and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 115-124.
    16. Hasan Mahmud & Joyashree Roy, 2021. "Barriers to Overcome in Accelerating Renewable Energy Penetration in Bangladesh," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    17. Azlina, A. A. & Abu Bakar, Shahida & Kamaludin, Mahirah & Ghani, Awang Noor, 2022. "Willingness to Pay for Renewable Energy: Evidence From High Wind and Wave Energy Potential Areas," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 59-70.
    18. Warner, Kevin J. & Jones, Glenn A., 2017. "A population-induced renewable energy timeline in nine world regions," Energy Policy, Elsevier, vol. 101(C), pages 65-76.
    19. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    20. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1084-:d:740086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.