IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9210-d994033.html
   My bibliography  Save this article

Load Frequency Model Predictive Control of a Large-Scale Multi-Source Power System

Author

Listed:
  • Tayma Afaneh

    (Department of Electrical Engineering, King Abdullah II School of Engineering, Princess Sumaya University for Technology (PSUT), Amman 11941, Jordan)

  • Omar Mohamed

    (Department of Electrical Engineering, King Abdullah II School of Engineering, Princess Sumaya University for Technology (PSUT), Amman 11941, Jordan)

  • Wejdan Abu Elhaija

    (Department of Electrical Engineering, King Abdullah II School of Engineering, Princess Sumaya University for Technology (PSUT), Amman 11941, Jordan)

Abstract

With increased interests in affordable energy resources, a cleaner environment, and sustainability, more objectives and operational obligations have been introduced to recent power plant control systems. This paper presents a verified load frequency model predictive control (MPC) that aims to satisfy the load demand of three practical generation technologies, which are wind energy systems, clean coal supercritical (SC) power plants, and dual-fuel gas turbines (GTs). Simplified state-space models for the two thermal units were constructed by concepts of subspace identification, whereas the individual wind turbine integration was implicated by the Hammerstein–Wiener (HW) model and then augmented from the output to simulate the effect of a wind farm, assuming similar power harvesting from all turbines in the farm. A practical strategy of control was then suggested, which was as follows: with a changing load demand, the available harvested wind energy must be fully admitted to the network to cover part of the load demand with the free energy, and the resultant load signal will then be instructed to the MPCs designed for the coal and gas units for the coordination of generation. The load signal, after being penetrated by wind, has more transients and faster changes, and needs a more sophisticated control in order to follow the load demand of the flexible coal and gas units. Furthermore, as the level of wind penetration increases, the power system frequency excursions are higher. The simulation results show an acceptable performance for linear MPCs embedded to the GT and coal units, with around a 90 MW share of wind without exceeding the safe restrictions of the plants and allowable reasonable frequency excursions. The complete simulation framework can be used to facilitate wind energy penetration in such power systems and train the operators and future engineers with subsequent power system frequency simulation studies.

Suggested Citation

  • Tayma Afaneh & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Load Frequency Model Predictive Control of a Large-Scale Multi-Source Power System," Energies, MDPI, vol. 15(23), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9210-:d:994033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annaluru, Rajeev & Garg, Amit, 2017. "Managing the Power Grid Ramping challenges critical to success of India’s Renewable Energy Targets," IIMA Working Papers WP 2017-08-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. di Gaeta, Alessandro & Reale, Fabrizio & Chiariello, Fabio & Massoli, Patrizio, 2017. "A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid," Energy, Elsevier, vol. 129(C), pages 299-320.
    3. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    4. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    5. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    3. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    4. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    5. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    6. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    7. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    8. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    9. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    10. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    11. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    12. Zhou, Hongxu & Yu, Zhongwei & Wu, Xiaohua & Fan, Zhanfeng & Yin, Xiaofeng & Zhou, Lingxue, 2023. "Dynamic programming improved online fuzzy power distribution in a demonstration fuel cell hybrid bus," Energy, Elsevier, vol. 284(C).
    13. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    14. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.
    15. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    16. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    17. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    18. Hosseinalipour, S.M. & Fattahi, A. & Khalili, H. & Tootoonchian, F. & Karimi, N., 2020. "Experimental investigation of entropy waves’ evolution for understanding of indirect combustion noise in gas turbine combustors," Energy, Elsevier, vol. 195(C).
    19. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    20. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9210-:d:994033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.