IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7717-d946812.html
   My bibliography  Save this article

Convex-Optimization-Based Power-Flow Calculation Method for Offshore Wind Systems

Author

Listed:
  • Yuwei Chen

    (PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Haifeng Qi

    (PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Hongke Li

    (PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Han Xu

    (PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Qiang Yang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Qing Chen

    (PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

Abstract

Offshore wind farms have boomed worldwide due to the sustainability of wind power and ocean resources. Power grid companies should consider the wind power consumption problem with more power generated. Power-flow calculation is the most fundamental tool in energy management. This paper proposes the convex-relaxation-based method for offshore wind farms’ power flow. In this method, the traditional equations’ problem solving is transferred into standard convex optimization, which can be solved efficiently with unique optimum. Second-order cone relaxations are imposed to describe the quadratic relationship. The exactness of the relaxation is guaranteed with the special definition of the objective function.The superiority of the proposed method is tested on the case study, for which a computational efficiency improvement is shown. Moreover, the reliability of the power-flow results is verified within the precision tolerance.

Suggested Citation

  • Yuwei Chen & Haifeng Qi & Hongke Li & Han Xu & Qiang Yang & Qing Chen, 2022. "Convex-Optimization-Based Power-Flow Calculation Method for Offshore Wind Systems," Energies, MDPI, vol. 15(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7717-:d:946812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    3. Yuwei Chen & Ji Xiang & Yanjun Li, 2018. "SOCP Relaxations of Optimal Power Flow Problem Considering Current Margins in Radial Networks," Energies, MDPI, vol. 11(11), pages 1-17, November.
    4. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    2. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    3. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    4. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    5. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
    6. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    7. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    8. Sihvonen, Markus, 2021. "Yield curve momentum," Research Discussion Papers 15/2021, Bank of Finland.
    9. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    10. Dillon T. Fogarty & Caleb P. Roberts & Daniel R. Uden & Victoria M. Donovan & Craig R. Allen & David E. Naugle & Matthew O. Jones & Brady W. Allred & Dirac Twidwell, 2020. "Woody Plant Encroachment and the Sustainability of Priority Conservation Areas," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    11. Luengo, Jorge & Negro, Vicente & García-Barba, Javier & López-Gutiérrez, José-Santos & Esteban, M. Dolores, 2019. "New detected uncertainties in the design of foundations for offshore Wind Turbines," Renewable Energy, Elsevier, vol. 131(C), pages 667-677.
    12. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    13. Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
    14. Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
    15. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    16. Robert J. Hill & Michael Scholz, 2014. "Incorporating Geospatial Data in House Price Indexes: A Hedonic Imputation Approach with Splines," Graz Economics Papers 2014-05, University of Graz, Department of Economics.
    17. Cathrine Ulla Jensen & Toke Emil Panduro, 2016. "PanJen: A test for functional form with continuous variables," IFRO Working Paper 2016/08, University of Copenhagen, Department of Food and Resource Economics.
    18. Ronald E. Gangnon & Natasha K. Stout & Oguzhan Alagoz & John M. Hampton & Brian L. Sprague & Amy Trentham-Dietz, 2018. "Contribution of Breast Cancer to Overall Mortality for US Women," Medical Decision Making, , vol. 38(1_suppl), pages 24-31, April.
    19. Yuko Araki & Atsushi Kawaguchi & Fumio Yamashita, 2013. "Regularized logistic discrimination with basis expansions for the early detection of Alzheimer’s disease based on three-dimensional MRI data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 109-119, March.
    20. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7717-:d:946812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.