IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7375-d935966.html
   My bibliography  Save this article

Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area

Author

Listed:
  • Wanli Wang

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center for Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Guiling Wang

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center for Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Feng Liu

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center for Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Chunlei Liu

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center for Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

Abstract

The central North China Plain (NCP) is one of the rapidly developing regions in China which has a great potential for ground source heat pump (GSHP) system applications. However, the ground thermal property, which is a prerequisite for GSHP system design, has been insufficiently investigated. In this paper, the ground thermal conditions including ground temperature and thermal conductivity are characterized in three representative hydrogeological regions in the NCP area: the piedmont alluvial plain, the central alluvial plain, and the coastal plain. Results show that the geothermal gradient below 40 m in depth in this area ranges from 0.018 °C/m to 0.029 °C/m. Although the thermal conductivity measured by soil samples differs slightly among the three regions, parameters in the piedmont plain have a larger variability than in the central and coastal plain due to the significant heterogeneity of the lithology. Thermal conductivity measured by the thermal response test (TRT) ranges between 2.37 and 2.68 W/(m·K) in the piedmont plain and varies between 1.35 and 1.94 W/(m·K) in the central and coastal plain, indicating that the piedmont plain has a higher potential for shallow geothermal exploitation than other two sub-areas. Comparing the TRT with laboratory measurements, the thermal conductivity obtained by the TRT is greater than that of the lab measurements in the piedmont plain due to the TRT outputs including the effects of groundwater flow. Therefore, the TRT is highly recommended to estimate the effective thermal conductivity of the ground in the piedmont plain, while laboratory and field tests are both suitable methods for the determination of thermal conductivity in the central and coastal plains.

Suggested Citation

  • Wanli Wang & Guiling Wang & Feng Liu & Chunlei Liu, 2022. "Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area," Energies, MDPI, vol. 15(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7375-:d:935966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Manen, Saskia M. & Wallin, Erin, 2012. "Ground temperature profiles and thermal rock properties at Wairakei, New Zealand," Renewable Energy, Elsevier, vol. 43(C), pages 313-321.
    2. Badache, Messaoud & Eslami-Nejad, Parham & Ouzzane, Mohamed & Aidoun, Zine & Lamarche, Louis, 2016. "A new modeling approach for improved ground temperature profile determination," Renewable Energy, Elsevier, vol. 85(C), pages 436-444.
    3. Blum, Philipp & Campillo, Gisela & Münch, Wolfram & Kölbel, Thomas, 2010. "CO2 savings of ground source heat pump systems – A regional analysis," Renewable Energy, Elsevier, vol. 35(1), pages 122-127.
    4. S. Tao & M. Y. Ru & W. Du & X. Zhu & Q. R. Zhong & B. G. Li & G. F. Shen & X. L. Pan & W. J. Meng & Y. L. Chen & H. Z. Shen & N. Lin & S. Su & S. J. Zhuo & T. B. Huang & Y. Xu & X. Yun & J. F. Liu & X, 2018. "Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey," Nature Energy, Nature, vol. 3(7), pages 567-573, July.
    5. Wang, Huajun & Qi, Chengying & Du, Hongpu & Gu, Jihao, 2010. "Improved method and case study of thermal response test for borehole heat exchangers of ground source heat pump system," Renewable Energy, Elsevier, vol. 35(3), pages 727-733.
    6. Luo, Jin & Luo, Zequan & Xie, Jihai & Xia, Dongsheng & Huang, Wei & Shao, Haibin & Xiang, Wei & Rohn, Joachim, 2018. "Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China," Renewable Energy, Elsevier, vol. 118(C), pages 230-244.
    7. Pouloupatis, Panayiotis D. & Tassou, Savvas A. & Christodoulides, Paul & Florides, Georgios A., 2017. "Parametric analysis of the factors affecting the efficiency of ground heat exchangers and design application aspects in Cyprus," Renewable Energy, Elsevier, vol. 103(C), pages 721-728.
    8. Radioti, G. & Sartor, K. & Charlier, R. & Dewallef, P. & Nguyen, F., 2017. "Effect of undisturbed ground temperature on the design of closed-loop geothermal systems: A case study in a semi-urban environment," Applied Energy, Elsevier, vol. 200(C), pages 89-105.
    9. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    10. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    11. Xiong, Zeyu & Fisher, Daniel E. & Spitler, Jeffrey D., 2015. "Development and validation of a Slinky™ ground heat exchanger model," Applied Energy, Elsevier, vol. 141(C), pages 57-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujiao Li & Peng Liu & Wei Wang & Xianmin Ke & Yiwen Jiao & Yitian Liu & Haotian Liang, 2023. "Optimizing the Layout of a Ground Source Heat Pump System with a Groundwater–Thermal Coupling Model," Energies, MDPI, vol. 16(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Wang, Huajun & Liu, Biying & Yang, Feifan & Liu, Feng, 2021. "Test investigation of operation performance of novel split-type ground source heat pump systems for clean heating of rural households in North China," Renewable Energy, Elsevier, vol. 163(C), pages 188-197.
    4. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    5. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    7. Wenting Ma & Moon Keun Kim & Jianli Hao, 2019. "Numerical Simulation Modeling of a GSHP and WSHP System for an Office Building in the Hot Summer and Cold Winter Region of China: A Case Study in Suzhou," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    8. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    9. Jin Luo & Yuhao Zhang & Jiasheng Tuo & Wei Xue & Joachim Rohn & Sebastian Baumgärtel, 2020. "A Novel Approach to the Analysis of Thermal Response Test (TRT) with Interrupted Power Input," Energies, MDPI, vol. 13(19), pages 1-14, September.
    10. Tissen, Carolin & Menberg, Kathrin & Benz, Susanne A. & Bayer, Peter & Steiner, Cornelia & Götzl, Gregor & Blum, Philipp, 2021. "Identifying key locations for shallow geothermal use in Vienna," Renewable Energy, Elsevier, vol. 167(C), pages 1-19.
    11. Luo, Jin & Qiao, Yu & Xiang, Wei & Rohn, Joachim, 2020. "Measurements and analysis of the thermal properties of a sedimentary succession in Yangtze plate in China," Renewable Energy, Elsevier, vol. 147(P2), pages 2708-2723.
    12. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    13. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    14. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    15. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    16. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    17. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    19. Salimi, Mohammad & Faramarzi, Davoud & Hosseinian, Seyed Hossein & Gharehpetian, Gevork B., 2020. "Replacement of natural gas with electricity to improve seismic service resilience: An application to domestic energy utilities in Iran," Energy, Elsevier, vol. 200(C).
    20. Monika Gwadera & Krzysztof Kupiec, 2021. "Modeling the Temperature Field in the Ground with an Installed Slinky-Coil Heat Exchanger," Energies, MDPI, vol. 14(13), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7375-:d:935966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.