IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7252-d932232.html
   My bibliography  Save this article

Effect of Temporal Variation in Chemical Composition on Methane Yields of Rendering Plant Wastewater

Author

Listed:
  • Erika Conde

    (School of Engineering and Built Environment, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia)

  • Prasad Kaparaju

    (School of Engineering and Built Environment, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia)

Abstract

The effect of temporal variation in chemical composition on methane yields of rendering plant wastewater was studied in batch experiments at 37 °C. In total, 14 grab samples were collected from Monday through Friday (Day 1 to 5) from a rendering plant located in Queensland, Australia. Each day, three samples were collected: early morning (S1), midday (S2) and afternoon (S3). Chemical analyses showed that a significant different in total solids (TS), volatile solids (VS), and chemical oxygen demand (COD) was noticed among the samples. TS content ranged from 0.13% to 1.82% w / w , while VS content was between 0.11% and 1.44% w / w . Among the samples, S2 of Day 3 had the highest COD concentration (10.5 g/L) whilst S1 of Day 1 had the lowest COD (3.75 g/L) and total volatile fatty acid (VFA) concentration (149.1 mg/L). In all samples, acetic acid was the dominant VFA and accounted for more than 65–90% of total VFAs. Biochemical methane potential studies showed that the highest methane yield of 270.2 L CH 4 /kgCOD added was obtained from S3 of Day 3. Whilst the lowest methane yield was noticed for S1 of Day 1 (83.7 L CH 4 /kgCOD added ). Results from kinetic modelling showed the modified Grompetz model was best fit than the first order model and a large variation was noticed between the experimental and the modelled data. Time delay ranged from 2.51 to 3.84 d whilst hydrolysis constant values were close to 0.21 d −1 . Thus, the study showed that chemical composition of incoming feed to a biogas plant varies throughout the week and is dependent on the chemical composition of organic materials received and the amount of steam used for rendering process.

Suggested Citation

  • Erika Conde & Prasad Kaparaju, 2022. "Effect of Temporal Variation in Chemical Composition on Methane Yields of Rendering Plant Wastewater," Energies, MDPI, vol. 15(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7252-:d:932232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    2. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tirthankar Mukherjee & Eric Trably & Prasad Kaparaju, 2023. "Critical Assessment of Hydrogen and Methane Production from 1G and 2G Sugarcane Processing Wastes Using One-Stage and Two-Stage Anaerobic Digestion," Energies, MDPI, vol. 16(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justyna Tarapata & Marcin Zieliński & Justyna Zulewska, 2022. "Valorization of Dairy By-Products: Efficiency of Energy Production from Biogas Obtained in Anaerobic Digestion of Ultrafiltration Permeates," Energies, MDPI, vol. 15(18), pages 1-15, September.
    2. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    3. Sayedin, Farid & Kermanshahi-pour, Azadeh & He, Quan Sophia, 2019. "Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio," Renewable Energy, Elsevier, vol. 135(C), pages 975-983.
    4. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    5. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    6. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    7. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.
    9. Riggio, Vincenzo & Comino, Elena & Rosso, Maurizio, 2015. "Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp," Renewable Energy, Elsevier, vol. 83(C), pages 1043-1049.
    10. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    11. Joana Silva & Rita Fragoso, 2023. "Enhanced Biomethanation: The Impact of Incorporating Fish Waste on the Co-Digestion of Pig Slurry and Orange Pomace," Energies, MDPI, vol. 16(16), pages 1-14, August.
    12. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    13. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    14. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    15. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    16. Addam Claes & Lucy Melchi & Sibel Uludag-Demirer & Goksel N. Demirer, 2021. "Supplementation of Carbon-Based Conductive Materials and Trace Metals to Improve Biogas Production from Apple Pomace," Sustainability, MDPI, vol. 13(17), pages 1-11, August.
    17. Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.
    18. Browne, James D. & Allen, Eoin & Murphy, Jerry D., 2014. "Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation," Applied Energy, Elsevier, vol. 128(C), pages 307-314.
    19. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    20. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7252-:d:932232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.