IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6724-d914973.html
   My bibliography  Save this article

Reliability Evaluation of Smart Substation Based on Time-Varying Probabilistic Hybrid Attack Graph

Author

Listed:
  • Zhiyong Li

    (School of Automation, Central South University, Changsha 410083, China)

  • Wubin Wen

    (School of Automation, Central South University, Changsha 410083, China)

  • Rende Dai

    (Hunan Zhongda Design Institute Co., Ltd., Changsha 410205, China)

  • Wanting Xi

    (School of Automation, Central South University, Changsha 410083, China)

Abstract

A substation is the portion of a power grid that forms a link between the cyber system and the physical system. Reliability evaluation of smart substations based on a time-varying probabilistic hybrid attack graph (TVPHAG) is studied in this paper. First, the topology network of the smart substation is established, whose attributes are represented by probability. Then, in order to solve the problem of asynchrony in the cyber-physical system and the hybrid caused by heterogeneity, time-varying state equation in topology and cuts in algebra are introduced to TVPHAG. Based on TVPHAG, the evaluation of the reliability of cyber-physical systems with multiple equipment and multiple timescales is established. On this basis, the influences of physical conditions, cyberattacks, physical attacks, and cyber-physical attacks on substations are analyzed, respectively. Finally, the simulation shows that the method is effective in evaluating the reliability of smart substations, providing a new method for the evaluation of reliability.

Suggested Citation

  • Zhiyong Li & Wubin Wen & Rende Dai & Wanting Xi, 2022. "Reliability Evaluation of Smart Substation Based on Time-Varying Probabilistic Hybrid Attack Graph," Energies, MDPI, vol. 15(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6724-:d:914973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yunfei & Huang, Linan & Smidts, Carol & Zhu, Quanyan, 2020. "Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Remigiusz Wisniewski, 2021. "Design of Petri Net-Based Cyber-Physical Systems Oriented on the Implementation in Field Programmable Gate Arrays," Energies, MDPI, vol. 14(21), pages 1-25, October.
    3. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    4. Xiaohong Yin & Lin Li & Qiang Liu, 2022. "A Study on the Vulnerability Cascade Propagation of Integrated Energy Systems in the Transportation Industry Based on the Petri Network," Energies, MDPI, vol. 15(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    2. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    3. repec:plo:pone00:0090265 is not listed on IDEAS
    4. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    5. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    6. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    7. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    8. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2014. "Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 25-34.
    9. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    10. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    11. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    12. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    13. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan & Jia, Chun-Xiao, 2025. "Hypergraph-based modeling of cascading failures with probabilistic node-to-group interactions," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    14. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Krawiecki, A., 2018. "Spin glass transition in a simple variant of the Ising model on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 773-790.
    16. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    17. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    19. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    21. Kyu-Min Lee & Kwang-Il Goh, 2016. "Strength of weak layers in cascading failures on multiplex networks: case of the international trade network," Papers 1603.05181, arXiv.org, revised May 2016.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6724-:d:914973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.