IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6492-d907489.html
   My bibliography  Save this article

Natural Ventilation Enhancement of a Roof Solar Chimney with Wind-Induced Channel

Author

Listed:
  • Ning Gao

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yao Yan

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Rui Sun

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yonggang Lei

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

A novel roof solar chimney with wind-induced channel was designed herein to augment indoor natural ventilation under combined action of wind and solar energy. Compared with the traditional solar chimney, the new rooftop solar chimney improves the air flow due to the wind-induced channel. The effects of channel width ratio, chimney inclination at different outdoor wind speeds on the natural ventilation performance of the roof solar chimney were studied by numerical simulation. Finite-volume method was used for the numerical calculation. It was found that the trends of ventilation rate are different when the channel widths increase. The mass flow rate of the new structure increases with the increase in the inclination angle. When the inclination angles increase from 30° to 90°, the ventilation rate increases by 212% for U = 1.0 m·s −1 , 166% for U = 2.0 m·s −1 , and 127% for U = 3.0 m·s −1 under the condition of and the solar radiation I = 600 W·m −2 .

Suggested Citation

  • Ning Gao & Yao Yan & Rui Sun & Yonggang Lei, 2022. "Natural Ventilation Enhancement of a Roof Solar Chimney with Wind-Induced Channel," Energies, MDPI, vol. 15(17), pages 1-9, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6492-:d:907489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    2. Imran, Ahmed Abdulnabi & Jalil, Jalal M. & Ahmed, Sabah T., 2015. "Induced flow for ventilation and cooling by a solar chimney," Renewable Energy, Elsevier, vol. 78(C), pages 236-244.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pau Chung Leng & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Gabriel H.T. Ling & Samsiah Abdullah & Eeydzah Aminudin & Wai Loan Liew & Weng Howe Chan, 2019. "The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House," Sustainability, MDPI, vol. 11(20), pages 1-35, October.
    2. Ren, Xiu-Hong & Wang, Lei & Liu, Run-Zhe & Wang, Lin & Zhao, Fu-Yun, 2021. "Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number," Renewable Energy, Elsevier, vol. 163(C), pages 342-356.
    3. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    4. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    5. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    6. Lubomír Klimeš & Pavel Charvát & Jiří Hejčík, 2018. "Comparison of the Energy Conversion Efficiency of a Solar Chimney and a Solar PV-Powered Fan for Ventilation Applications," Energies, MDPI, vol. 11(4), pages 1-15, April.
    7. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    8. Chi, Fang'ai & Pan, Jiajie & Liu, Yang & Guo, Yuang, 2021. "Improvement of thermal comfort by hydraulic-driven ventilation device and space partition arrangement towards building energy saving," Applied Energy, Elsevier, vol. 299(C).
    9. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    10. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    11. Siphiwe Mdlalose & Sipho Sibanda & Tilahun Workneh & Mark Laing, 2022. "Innovative Low-Cost Naturally Ventilated Maize Seed Storage System," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 8(1), pages 39-49, 01-2022.
    12. Pau Chung Leng & Gabriel Hoh Teck Ling & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Eeydzah Aminudin & Weng Howe Chan & Dg Normaswanna Tawasil, 2020. "Thermal Performance of Single-Story Air-Welled Terraced House in Malaysia: A Field Measurement Approach," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    13. Bevilacqua, Piero & Benevento, Federica & Bruno, Roberto & Arcuri, Natale, 2019. "Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?," Energy, Elsevier, vol. 185(C), pages 554-566.
    14. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    15. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    16. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Samira Louafi, 2022. "Solar chimney for enhancing thermal comfort in individual housing in a semi-humid climate," Technium Social Sciences Journal, Technium Science, vol. 38(1), pages 818-832, December.
    18. Ren, Xiu-Hong & Liu, Run-Zhe & Wang, Yun-He & Wang, Lin & Zhao, Fu-Yun, 2019. "Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: Reversal and cooperative flow dynamics," Renewable Energy, Elsevier, vol. 138(C), pages 354-367.
    19. Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.
    20. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6492-:d:907489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.