IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5730-d277254.html
   My bibliography  Save this article

The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House

Author

Listed:
  • Pau Chung Leng

    (Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor 81300, Malaysia)

  • Mohd Hamdan Ahmad

    (Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor 81300, Malaysia)

  • Dilshan Remaz Ossen

    (Department of Architecture Engineering, Kingdom University, Riffa 40434, Bahrain)

  • Gabriel H.T. Ling

    (Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor 81300, Malaysia)

  • Samsiah Abdullah

    (Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor 81300, Malaysia)

  • Eeydzah Aminudin

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia)

  • Wai Loan Liew

    (School of Professional and Continuing Education, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia)

  • Weng Howe Chan

    (School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81300, Malaysia)

Abstract

In Malaysia, terraced housing hardly provides thermal comfort to the occupants. More often than not, mechanical cooling, which is an energy consuming component, contributes to outdoor heat dissipation that leads to an urban heat island effect. Alternatively, encouraging natural ventilation can eliminate heat from the indoor environment. Unfortunately, with static outdoor air conditioning and lack of windows in terraced houses, the conventional ventilation technique does not work well, even for houses with an air well. Hence, this research investigated ways to maximize natural ventilation in terraced housing by exploring the air well configurations. By adopting an existing single storey terraced house with an air well, located in Kuching, Sarawak, the existing indoor environmental conditions and thermal performance were investigated and monitored using scientific equipment, namely HOBO U12 air temperature and air humidity, the HOBO U12 anemometer and the Delta Ohm HD32.3 Wet Bulb Globe Temperature meter. For this parametric study, the DesignBuilder software was utilized. The field study illustrated that there is a need to improve indoor thermal comfort. Thus, the study further proposes improvement strategies to the existing case study house. The proposition was to turn the existing air well into a solar chimney taking into account advantages of constant and available solar radiation for stack ventilation. The results suggest that the enhanced air well was able to improve the indoor room air velocity and reduce air temperature. The enhanced air well with 3.5 m height, 1.0 m air gap width, 2.0 m length was able to induce higher air velocity. During the highest air temperature hour, the indoor air velocity in existing test room increased from 0.02 m/s in the existing condition to 0.29 m/s in the hottest day with 2.06 °C air temperature reduction. The findings revealed that the proposed air well could enhance the thermal and ventilation performance under the Malaysia tropical climate.

Suggested Citation

  • Pau Chung Leng & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Gabriel H.T. Ling & Samsiah Abdullah & Eeydzah Aminudin & Wai Loan Liew & Weng Howe Chan, 2019. "The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House," Sustainability, MDPI, vol. 11(20), pages 1-35, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5730-:d:277254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Awbi, H.B., 1998. "Energy efficient room air distribution," Renewable Energy, Elsevier, vol. 15(1), pages 293-299.
    2. Moosavi, Leila & Mahyuddin, Norhayati & Ab Ghafar, Norafida & Azzam Ismail, Muhammad, 2014. "Thermal performance of atria: An overview of natural ventilation effective designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 654-670.
    3. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    4. Imran, Ahmed Abdulnabi & Jalil, Jalal M. & Ahmed, Sabah T., 2015. "Induced flow for ventilation and cooling by a solar chimney," Renewable Energy, Elsevier, vol. 78(C), pages 236-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pau Chung Leng & Gabriel Hoh Teck Ling & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Eeydzah Aminudin & Weng Howe Chan & Dg Normaswanna Tawasil, 2020. "Thermal Performance of Single-Story Air-Welled Terraced House in Malaysia: A Field Measurement Approach," Sustainability, MDPI, vol. 13(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    2. Ren, Xiu-Hong & Wang, Lei & Liu, Run-Zhe & Wang, Lin & Zhao, Fu-Yun, 2021. "Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number," Renewable Energy, Elsevier, vol. 163(C), pages 342-356.
    3. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Ning Gao & Yao Yan & Rui Sun & Yonggang Lei, 2022. "Natural Ventilation Enhancement of a Roof Solar Chimney with Wind-Induced Channel," Energies, MDPI, vol. 15(17), pages 1-9, September.
    5. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    6. Janusz Marchwiński & Agnieszka Starzyk & Ołeksij Kopyłow & Karolina Kurtz-Orecka, 2023. "Impact of Atrium Glazing with and without BIPV on Energy Performance of the Low-Rise Building: A Central European Case Study," Energies, MDPI, vol. 16(12), pages 1-25, June.
    7. Pau Chung Leng & Gabriel Hoh Teck Ling & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Eeydzah Aminudin & Weng Howe Chan & Dg Normaswanna Tawasil, 2020. "Thermal Performance of Single-Story Air-Welled Terraced House in Malaysia: A Field Measurement Approach," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    8. Yuanda Cheng & Jinming Yang & Zhenyu Du & Jinqing Peng, 2016. "Investigations on the Energy Efficiency of Stratified Air Distribution Systems with Different Diffuser Layouts," Sustainability, MDPI, vol. 8(8), pages 1-13, July.
    9. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    10. Norafida Ab Ghafar & Mohamed Gadi & Mastura Adam, 2019. "Evaluation of thermal and solar performance in atrium buildings using sequential simulation," Energy & Environment, , vol. 30(6), pages 969-990, September.
    11. Bevilacqua, Piero & Benevento, Federica & Bruno, Roberto & Arcuri, Natale, 2019. "Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?," Energy, Elsevier, vol. 185(C), pages 554-566.
    12. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    13. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    14. Masoud Esfandiari & Suzaini Mohamed Zaid & Muhammad Azzam Ismail & Mohammad Reza Hafezi & Iman Asadi & Saleh Mohammadi, 2021. "A Field Study on Thermal Comfort and Cooling Load Demand Optimization in a Tropical Climate," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    15. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Krzysztof Grygierek & Joanna Ferdyn-Grygierek, 2018. "Multi-Objective Optimization of the Envelope of Building with Natural Ventilation," Energies, MDPI, vol. 11(6), pages 1-17, May.
    17. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    18. Lubomír Klimeš & Pavel Charvát & Jiří Hejčík, 2018. "Comparison of the Energy Conversion Efficiency of a Solar Chimney and a Solar PV-Powered Fan for Ventilation Applications," Energies, MDPI, vol. 11(4), pages 1-15, April.
    19. Zhou, Zhihua & Liu, Yurong & Yuan, Jianjuan & Zuo, Jian & Chen, Guanyi & Xu, Linyu & Rameezdeen, Raufdeen, 2016. "Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 372-381.
    20. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5730-:d:277254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.