IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5777-d883895.html
   My bibliography  Save this article

Power Transmission Lines: Worldwide Research Trends

Author

Listed:
  • Francisca Alcayde-García

    (Department of Engineering, University of Almeria, ceiA3, 04120 Almeria, Spain)

  • Esther Salmerón-Manzano

    (Faculty of Law, Universidad Internacional de La Rioja (UNIR), 26006 Logroño, Spain)

  • Miguel A. Montero

    (Department of Engineering, University of Almeria, ceiA3, 04120 Almeria, Spain)

  • Alfredo Alcayde

    (Department of Engineering, University of Almeria, ceiA3, 04120 Almeria, Spain)

  • Francisco Manzano-Agugliaro

    (Department of Engineering, University of Almeria, ceiA3, 04120 Almeria, Spain)

Abstract

The importance of the quality and continuity of electricity supply is increasingly evident given the dependence of the world economy on its daily and instantaneous operation. In turn, the network is made up of power transmission lines. This study has been carried out based on the Scopus database, where all the publications, over 5000 documents, related to the topic of the power transmission lines have been analyzed up to the year 2022. This manuscript aims to highlight the main global research trends in power transmission lines and to detect which are the emerging areas. This manuscript cover three main aspects: First, the main scientific categories of these publications and their temporal trends. Second, the countries and affiliations that contribute to the research and their main research topics. Third, identification of the main trends in the field using the detection of scientific communities by means of the clustering method. The three main scientific categories found were Engineering, Energy and Computer Science. This research is most strongly developed in China, as the top 10 institutions are from this country, followed by USA and in third place by Russia. Twelve lines of research have been detected: Line Inspection, Leakage Current, Magnetic Fields, Fault Location, Icing, Lines Design, Natural Disasters, Temperature, Half-wave, Arc Flash, Pattern Recognition, and Artificial Intelligence. This research will open new perspectives for future research on power transmission lines.

Suggested Citation

  • Francisca Alcayde-García & Esther Salmerón-Manzano & Miguel A. Montero & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2022. "Power Transmission Lines: Worldwide Research Trends," Energies, MDPI, vol. 15(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5777-:d:883895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abadie, Luis María & Chamorro, José Manuel, 2021. "Evaluation of a cross-border electricity interconnection: The case of Spain-France," Energy, Elsevier, vol. 233(C).
    2. Jingjing Wang & Junhua Wang & Jianwei Shao & Jiangui Li, 2017. "Image Recognition of Icing Thickness on Power Transmission Lines Based on a Least Squares Hough Transform," Energies, MDPI, vol. 10(4), pages 1-15, March.
    3. Wei Wang & Xueliang Huang & Linlin Tan & Jinpeng Guo & Han Liu, 2016. "Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines," Energies, MDPI, vol. 9(4), pages 1-16, March.
    4. Carmen de la Cruz-Lovera & Alberto-Jesus Perea-Moreno & José Luis de la Cruz-Fernández & Francisco G. Montoya & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Analysis of Research Topics and Scientific Collaborations in Energy Saving Using Bibliometric Techniques and Community Detection," Energies, MDPI, vol. 12(10), pages 1-23, May.
    5. Esther Salmeron-Manzano & Francisco Manzano-Agugliaro, 2018. "The Electric Bicycle: Worldwide Research Trends," Energies, MDPI, vol. 11(7), pages 1-16, July.
    6. Keles, Dogan & Dehler-Holland, Joris & Densing, Martin & Panos, Evangelos & Hack, Felix, 2020. "Cross-border effects in interconnected electricity markets - an analysis of the Swiss electricity prices," Energy Economics, Elsevier, vol. 90(C).
    7. Zheng Xu & Jian Yang & Nengjin Sheng, 2018. "Infeasibility Analysis of Half-Wavelength Transmission Systems," Energies, MDPI, vol. 11(7), pages 1-21, July.
    8. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    9. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    10. Zhou, Xiaoxin & Yi, Jun & Song, Ruihua & Yang, Xiaoyu & Li, Yan & Tang, Haiyan, 2010. "An overview of power transmission systems in China," Energy, Elsevier, vol. 35(11), pages 4302-4312.
    11. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    12. Esther Salmerón-Manzano & Jose Antonio Garrido-Cardenas & Francisco Manzano-Agugliaro, 2020. "Worldwide Research Trends on Medicinal Plants," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virgilio Alfonso Murillo Rodríguez & Noé Villa Villaseñor & José Manuel Robles Solís & Omar Alejandro Guirette Barbosa, 2023. "Impact of Automation on Enhancing Energy Quality in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 16(17), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    2. Champagne, Claudia, 2014. "The international syndicated loan market network: An “unholy trinity”?," Global Finance Journal, Elsevier, vol. 25(2), pages 148-168.
    3. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    4. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    5. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    6. Maharjan, Pukar & Salauddin, Md & Cho, Hyunok & Park, Jae Yeong, 2018. "An indoor power line based magnetic field energy harvester for self-powered wireless sensors in smart home applications," Applied Energy, Elsevier, vol. 232(C), pages 398-408.
    7. Ming, Zeng & Lilin, Peng & Qiannan, Fan & Yingjie, Zhang, 2016. "Trans-regional electricity transmission in China: Status, issues and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 572-583.
    8. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    10. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    11. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    12. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    13. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    14. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    15. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    16. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2018. "The Higher Education Sustainability through Virtual Laboratories: The Spanish University as Case of Study," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    18. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Xia, Yongxiang & Fan, Jin & Hill, David, 2010. "Cascading failure in Watts–Strogatz small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1281-1285.
    20. Ouyang, Bo & Teng, Zhaosheng & Tang, Qiu, 2016. "Dynamics in local influence cascading models," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 182-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5777-:d:883895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.