IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5147-d863728.html
   My bibliography  Save this article

Review of Methodologies for the Assessment of Feasible Operating Regions at the TSO–DSO Interface

Author

Listed:
  • Georgios Papazoglou

    (School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Pandelis Biskas

    (School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

Abstract

The Feasible Operating Region (FOR) is defined as a set of points in the PQ plane that includes all the feasible active and reactive power flows at the Transmission System Operator (TSO)–Distribution System Operator (DSO) interconnection. Recent trends in power systems worldwide increase the need of cooperation between the TSO and the DSO for flexibility provision. In the current landscape, the efficient and accurate estimation of the FOR could unlock the potential of the DSO to provide flexibility to the TSO. To that end, much existing research has tackled the problem of FOR estimation, which is a challenging problem. However, no research that adequately organizes the literature exists. This work aims to fill this gap. Three categories of FOR estimation methods were identified: Geometric, Random Sampling, and Optimization-Based methods. The basic principles behind each method are analyzed and the most significant works involving each method are presented. For the reviewed works, we focus on the types of flexibility providing units included in the FOR estimation, the examination of time dependence, and the monetization of the FOR. Finally, the strengths and weaknesses of each category of methods are compared, providing a holistic review of the available FOR estimation methods.

Suggested Citation

  • Georgios Papazoglou & Pandelis Biskas, 2022. "Review of Methodologies for the Assessment of Feasible Operating Regions at the TSO–DSO Interface," Energies, MDPI, vol. 15(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5147-:d:863728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Hong & Pierre Pinson & Yi Wang & Rafal Weron & Dazhi Yang & Hamidreza Zareipour, 2020. "Energy forecasting: A review and outlook," WORking papers in Management Science (WORMS) WORMS/20/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    2. Emrah Öztürk & Klaus Rheinberger & Timm Faulwasser & Karl Worthmann & Markus Preißinger, 2022. "Aggregation of Demand-Side Flexibilities: A Comparative Study of Approximation Algorithms," Energies, MDPI, vol. 15(7), pages 1-25, March.
    3. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    4. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.
    5. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Papazoglou & Pandelis Biskas, 2023. "Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem," Energies, MDPI, vol. 16(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    2. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
    3. Georgios Papazoglou & Pandelis Biskas, 2023. "Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem," Energies, MDPI, vol. 16(3), pages 1-25, January.
    4. Orlando Valarezo & Tomás Gómez & José Pablo Chaves-Avila & Leandro Lind & Mauricio Correa & David Ulrich Ziegler & Rodrigo Escobar, 2021. "Analysis of New Flexibility Market Models in Europe," Energies, MDPI, vol. 14(12), pages 1-24, June.
    5. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    6. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    7. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    8. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    9. Qinghe Zhao & Xinyi Liu & Junlong Fang, 2023. "Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study," Energies, MDPI, vol. 16(24), pages 1-29, December.
    10. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    11. Bellenbaum, Julia & Höckner, Jonas & Weber, Christoph, 2022. "Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions," Energy Economics, Elsevier, vol. 106(C).
    12. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    13. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    14. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    15. Heilmann, Erik, 2023. "The impact of transparency policies on local flexibility markets in electric distribution networks," Utilities Policy, Elsevier, vol. 83(C).
    16. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    17. Lago, Jesus & Poplavskaya, Ksenia & Suryanarayana, Gowri & De Schutter, Bart, 2021. "A market framework for grid balancing support through imbalances trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Nayeem Rahman & Rodrigo Rabetino & Arto Rajala & Jukka Partanen, 2021. "Ushering in a New Dawn: Demand-Side Local Flexibility Platform Governance and Design in the Finnish Energy Markets," Energies, MDPI, vol. 14(15), pages 1-23, July.
    20. Mello, J. & Villar, J., 2023. "Integrating flexibility and energy local markets with wholesale balancing responsibilities in the context of renewable energy communities," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5147-:d:863728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.