IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4378-d1726267.html
   My bibliography  Save this article

Hybrid Model for Medium-Term Load Forecasting in Urban Power Grids

Author

Listed:
  • Siwei Cheng

    (Department of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jing Shi

    (Department of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Qi Cheng

    (Department of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xinmeng Zhou

    (Department of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Shuai Zeng

    (Department of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In urban power planning, it is typically necessary to predict future monthly, quarterly, and annual electricity consumption to conduct advance planning and ensure the stable operation of the power grid. Therefore, accurate medium-term load forecasting is of critical importance for urban power grid planning and operation. However, current research primarily focuses on short-term forecasting, which is largely limited to a single timescale. To address this issue, this paper proposes a combined model for medium-term load forecasting, enabling predictions of loads over multiple timescales within the next year. This can help optimize power supply planning. First, by improving the 3 σ criterion and incorporating holiday corrections, the original data are processed. Combining the advantages of the Prophet algorithm in capturing linear relationships and future trends with the Random Forest algorithm in capturing nonlinear relationships, a Prophet–Random Forest combined forecasting model is constructed. This model is then applied to predict the electricity consumption of a city in southern China. The results demonstrate that the proposed model achieves high accuracy in medium-term forecasting and can predict loads across multiple timescales. Specifically, for annual, quarterly, and monthly predictions, the average prediction errors are 1.02%, 2.66%, and 3.92%, respectively, showcasing strong forecasting performance.

Suggested Citation

  • Siwei Cheng & Jing Shi & Qi Cheng & Xinmeng Zhou & Shuai Zeng, 2025. "Hybrid Model for Medium-Term Load Forecasting in Urban Power Grids," Energies, MDPI, vol. 18(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4378-:d:1726267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
    2. Kalhori, M. Rostam Niakan & Emami, I. Taheri & Fallahi, F. & Tabarzadi, M., 2022. "A data-driven knowledge-based system with reasoning under uncertain evidence for regional long-term hourly load forecasting," Applied Energy, Elsevier, vol. 314(C).
    3. Zhu, Suling & Wang, Jianzhou & Zhao, Weigang & Wang, Jujie, 2011. "A seasonal hybrid procedure for electricity demand forecasting in China," Applied Energy, Elsevier, vol. 88(11), pages 3807-3815.
    4. Xiaomin Xu & Dongxiao Niu & Ming Fu & Huicong Xia & Han Wu, 2015. "A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search," Energies, MDPI, vol. 8(11), pages 1-21, November.
    5. Lin, Boqiang & Zhu, Junpeng, 2020. "Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter?," Applied Energy, Elsevier, vol. 262(C).
    6. Munkhammar, Joakim & van der Meer, Dennis & Widén, Joakim, 2021. "Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model," Applied Energy, Elsevier, vol. 282(PA).
    7. Tao Hong & Pierre Pinson & Yi Wang & Rafal Weron & Dazhi Yang & Hamidreza Zareipour, 2020. "Energy forecasting: A review and outlook," WORking papers in Management Science (WORMS) WORMS/20/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    8. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    9. Li, Jinghua & Luo, Yichen & Wei, Shanyang, 2022. "Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
    2. Li, Lechen & Meinrenken, Christoph J. & Modi, Vijay & Culligan, Patricia J., 2021. "Short-term apartment-level load forecasting using a modified neural network with selected auto-regressive features," Applied Energy, Elsevier, vol. 287(C).
    3. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    4. Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
    5. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org, revised Feb 2025.
    6. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    7. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    8. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    9. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    10. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    11. Deng, Song & Dong, Xia & Tao, Li & Wang, Junjie & He, Yi & Yue, Dong, 2024. "Multi-type load forecasting model based on random forest and density clustering with the influence of noise and load patterns," Energy, Elsevier, vol. 307(C).
    12. Meixia Wang, 2024. "Predicting China’s Energy Consumption and CO 2 Emissions by Employing a Novel Grey Model," Energies, MDPI, vol. 17(21), pages 1-25, October.
    13. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    14. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.
    15. Jianmin You & Xiqiang Chen & Jindao Chen, 2021. "Decomposition of Industrial Electricity Efficiency and Electricity-Saving Potential of Special Economic Zones in China Considering the Heterogeneity of Administrative Hierarchy and Regional Location," Energies, MDPI, vol. 14(17), pages 1-22, September.
    16. Xie, Li & Kong, Chun, 2023. "The social welfare effect of electricity user connection price policy reform," Applied Energy, Elsevier, vol. 346(C).
    17. Pierre Pinson & Liyang Han & Jalal Kazempour, 2022. "Regression markets and application to energy forecasting," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 533-573, October.
    18. Natalia Larionova & Julia Varlamova & Julia Kolesnikova, 2021. "Does Digitalization Reduce Electricity Consumption? Evidence from Spatial Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 413-419.
    19. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    20. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4378-:d:1726267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.