IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5038-d859601.html
   My bibliography  Save this article

Hydrogen Storage in Geological Formations—The Potential of Salt Caverns

Author

Listed:
  • Aleksandra Małachowska

    (Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland)

  • Natalia Łukasik

    (Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland)

  • Joanna Mioduska

    (Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland)

  • Jacek Gębicki

    (Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland)

Abstract

Hydrogen-based technologies are among the most promising solutions to fulfill the zero-emission scenario and ensure the energy independence of many countries. Hydrogen is considered a green energy carrier, which can be utilized in the energy, transport, and chemical sectors. However, efficient and safe large-scale hydrogen storage is still challenging. The most frequently used hydrogen storage solutions in industry, i.e., compression and liquefaction, are highly energy-consuming. Underground hydrogen storage is considered the most economical and safe option for large-scale utilization at various time scales. Among underground geological formations, salt caverns are the most promising for hydrogen storage, due to their suitable physicochemical and mechanical properties that ensure safe and efficient storage even at high pressures. In this paper, recent advances in underground storage with a particular emphasis on salt cavern utilization in Europe are presented. The initial experience in hydrogen storage in underground reservoirs was discussed, and the potential for worldwide commercialization of this technology was analyzed. In Poland, salt deposits from the north-west and central regions (e.g., Rogóźno, Damasławek, Łeba) are considered possible formations for hydrogen storage. The Gubin area is also promising, where 25 salt caverns with a total capacity of 1600 million Nm 3 can be constructed.

Suggested Citation

  • Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5038-:d:859601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    2. Bartosz Ceran, 2020. "Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios," Energies, MDPI, vol. 13(16), pages 1-21, August.
    3. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    3. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    4. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    5. Thimet, P.J. & Mavromatidis, G., 2023. "What-where-when: Investigating the role of storage for the German electricity system transition," Applied Energy, Elsevier, vol. 351(C).
    6. Shengwei Dong & Taian Fang & Jifang Wan & Xuhui Hu & Jingcui Li & Hangming Liu & Dongyang Li & Shaofeng Qiao, 2022. "Study on the Effect of the Water Injection Rate on the Cavern Leaching Strings of Salt Cavern Gas Storages," Energies, MDPI, vol. 16(1), pages 1-18, December.
    7. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    8. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Wang, Jianfeng & Zhu, Suyang & Ma, Haoming & Wu, Zhengbin, 2023. "Optimized lower pressure limit for condensate underground gas storage using a dynamic pseudo-component model," Energy, Elsevier, vol. 285(C).
    9. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    3. Asha-Dee N. Celestine & Martin Sulic & Marika Wieliczko & Ned T. Stetson, 2021. "Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    4. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    6. Wang, Heng & Xin, Yuchen & Kou, Zuhao & He, Chunyu & Li, Yunfei & Wang, Tongtong, 2024. "Unveil the role of engineering parameters on hydrogen recovery in deep saline aquifer, Rock Springs Uplift, Wyoming," Renewable Energy, Elsevier, vol. 225(C).
    7. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    8. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    10. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    11. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    12. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    13. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    15. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    16. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    17. Lei Wang & Bohang Liu & Hanzhi Yang & Yintong Guo & Jing Li & Hejuan Liu, 2022. "Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination," Energies, MDPI, vol. 15(17), pages 1-17, September.
    18. Leszek Lankof, 2020. "Assessment of Permian Zubers as the Host Rock for Deep Geological Disposal," Energies, MDPI, vol. 13(9), pages 1-32, May.
    19. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).
    20. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5038-:d:859601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.