IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028992.html
   My bibliography  Save this article

Optimized lower pressure limit for condensate underground gas storage using a dynamic pseudo-component model

Author

Listed:
  • Deng, Peng
  • Chen, Zhangxin
  • Peng, Xiaolong
  • Wang, Jianfeng
  • Zhu, Suyang
  • Ma, Haoming
  • Wu, Zhengbin

Abstract

In the context of gas injection in reservoirs, the dilution process of components' thermodynamic properties has not been adequately represented in traditional numerical simulation methods. This study focuses on the Dalaoba condensate underground gas storage (CUGS) in China and establishes a dynamic pseudo-component model to identify the equilibrium point for gas storage facility efficiency and the condensate oil recovery rate. Using a multi-objective particle swarm optimization approach, thermodynamic parameters are estimated as functions of the injected gas volume. This dynamic pseudo-component model is then utilized to find the optimized lower pressure limit for CUGS by assessing condensate oil production, gas flow capability, and water encroachment. Results show that the dynamic pseudo-component model can represent the process of thermodynamic property changes towards lighter components during natural gas injection. The case study demonstrates that conventional models overestimate condensate oil production, while the dynamic model achieves an accuracy rate of 92.8 % with historical data. The dynamic pseudo-component model offers valuable insights for large-scale gas injection simulation, promoting stable and efficient natural gas storage and supply in CUGS.

Suggested Citation

  • Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Wang, Jianfeng & Zhu, Suyang & Ma, Haoming & Wu, Zhengbin, 2023. "Optimized lower pressure limit for condensate underground gas storage using a dynamic pseudo-component model," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028992
    DOI: 10.1016/j.energy.2023.129505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hui, Gang & Chen, Zhangxin & Schultz, Ryan & Chen, Shengnan & Song, Zhaojie & Zhang, Zhaochen & Song, Yilei & Wang, Hai & Wang, Muming & Gu, Fei, 2023. "Intricate unconventional fracture networks provide fluid diffusion pathways to reactivate pre-existing faults in unconventional reservoirs," Energy, Elsevier, vol. 282(C).
    2. Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.
    3. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Jie Zhang & Feifei Fang & Wei Lin & Shusheng Gao & Yalong Li & Qi Li & Yi Yang, 2020. "Research on Injection-Production Capability and Seepage Characteristics of Multi-Cycle Operation of Underground Gas Storage in Gas Field—Case Study of the Wen 23 Gas Storage," Energies, MDPI, vol. 13(15), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yilei & Song, Zhaojie & Chen, Zhangxin & Zhang, Lichao & Zhang, Yunfei & Feng, Dong & Wu, Zhengbin & Wu, Jiapeng, 2024. "Fluid phase behavior in multi-scale shale reservoirs with nano-confinement effect," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    3. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    4. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    5. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    6. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    8. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    9. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    10. Muhammad Zain-Ul-Abedin & Andreas Henk, 2023. "Thermal-Hydraulic-Mechanical (THM) Modelling of Short-Term Gas Storage in a Depleted Gas Reservoir—A Case Study from South Germany," Energies, MDPI, vol. 16(8), pages 1-29, April.
    11. Mengfei Zhou & Xizhe Li & Yong Hu & Xuan Xu & Liangji Jiang & Yalong Li, 2021. "Physical Simulation Experimental Technology and Mechanism of Water Invasion in Fractured-Porous Gas Reservoir: A Review," Energies, MDPI, vol. 14(13), pages 1-15, June.
    12. Mao, Shaowen & Chen, Bailian & Malki, Mohamed & Chen, Fangxuan & Morales, Misael & Ma, Zhiwei & Mehana, Mohamed, 2024. "Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning," Applied Energy, Elsevier, vol. 361(C).
    13. Shengwei Dong & Taian Fang & Jifang Wan & Xuhui Hu & Jingcui Li & Hangming Liu & Dongyang Li & Shaofeng Qiao, 2022. "Study on the Effect of the Water Injection Rate on the Cavern Leaching Strings of Salt Cavern Gas Storages," Energies, MDPI, vol. 16(1), pages 1-18, December.
    14. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    15. Qiao, Weibiao & Fu, Zonghua & Du, Mingjun & Nan, Wei & Liu, Enbin, 2023. "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow searc," Energy, Elsevier, vol. 274(C).
    16. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    17. Blay-Roger, Rubén & Bach, Wolfgang & Bobadilla, Luis F. & Reina, Tomas Ramirez & Odriozola, José A. & Amils, Ricardo & Blay, Vincent, 2024. "Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    19. Thimet, P.J. & Mavromatidis, G., 2023. "What-where-when: Investigating the role of storage for the German electricity system transition," Applied Energy, Elsevier, vol. 351(C).
    20. Yujie He & Yanyan Li, 2024. "FEM Simulation of Fault Reactivation Induced with Hydraulic Fracturing in the Shangluo Region of Sichuan Province," Energies, MDPI, vol. 17(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.