IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021772.html
   My bibliography  Save this article

CO2 injection induced thermodynamic shifts in continental and marine shale oils

Author

Listed:
  • Song, Yilei
  • Song, Zhaojie
  • Mo, Yasi
  • Chen, Fengyuan
  • Jing, Yahao
  • Han, Xiao
  • Bai, Mingxing
  • Tian, Shouceng
  • Chen, Zhangxin

Abstract

As carbon capture, utilization, and storage initiatives gain momentum, understanding CO2-shale oil interactions is crucial for optimizing enhanced oil recovery (EOR) and maximizing CO2 sequestration. This study provides a comprehensive analysis of the phase behavior and thermodynamic responses of medium-high maturity continental (HMC), medium-low maturity continental (LMC), and marine (Bakken) shale oils under CO2 injection. Experimental data and phase behavior modeling reveal distinct trends in saturation pressure, molecular weight, volume expansion, viscosity, and the critical role of light-to-heavy component ratios. Key findings show that, generally, CO2 injection initially raises and then lowers saturation pressure, while the high methane content in HMC A induces a continuous decrease in saturation pressure, shifting from an oil-gas coexistence state to a pure oil phase. Increased CO2 results in significant reductions in viscosity and molecular weight, especially in LMC, and promotes volume expansion in HMC and Bakken oils. Light-to-heavy ratios significantly influence phase behavior, with higher methane content enhancing CO2 solubility. Furthermore, simulations indicate that achieving miscibility requires high pressures and CO2 concentrations, with HMC A exhibiting backward-contact miscibility in contrast to the forward-contact miscibility seen in other oils. This study underscores the need for tailored EOR strategies to account for compositional variations in shale oils, with methane and CO2 co-injection offering promising improvements in miscibility and recovery efficiency.

Suggested Citation

  • Song, Yilei & Song, Zhaojie & Mo, Yasi & Chen, Fengyuan & Jing, Yahao & Han, Xiao & Bai, Mingxing & Tian, Shouceng & Chen, Zhangxin, 2025. "CO2 injection induced thermodynamic shifts in continental and marine shale oils," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021772
    DOI: 10.1016/j.energy.2025.136535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hui, Gang & Chen, Zhangxin & Schultz, Ryan & Chen, Shengnan & Song, Zhaojie & Zhang, Zhaochen & Song, Yilei & Wang, Hai & Wang, Muming & Gu, Fei, 2023. "Intricate unconventional fracture networks provide fluid diffusion pathways to reactivate pre-existing faults in unconventional reservoirs," Energy, Elsevier, vol. 282(C).
    2. Song, Yilei & Song, Zhaojie & Chen, Zhangxin & Zhang, Lichao & Zhang, Yunfei & Feng, Dong & Wu, Zhengbin & Wu, Jiapeng, 2024. "Fluid phase behavior in multi-scale shale reservoirs with nano-confinement effect," Energy, Elsevier, vol. 289(C).
    3. Wang, Zengding & Liu, Tengyu & Liu, Shanchao & Jia, Cunqi & Yao, Jun & Sun, Hai & Yang, Yongfei & Zhang, Lei & Delshad, Mojdeh & Sepehrnoori, Kamy & Zhong, Junjie, 2024. "Adsorption effects on CO2-oil minimum miscibility pressure in tight reservoirs," Energy, Elsevier, vol. 288(C).
    4. Zhang, Kaiqiang & Jia, Na & Li, Songyan & Liu, Lirong, 2019. "Static and dynamic behavior of CO2 enhanced oil recovery in shale reservoirs: Experimental nanofluidics and theoretical models with dual-scale nanopores," Applied Energy, Elsevier, vol. 255(C).
    5. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Li, Xiaobo & Di, Chaojie & Zhu, Suyang & Wang, Chaowen & Song, Yilei & Shi, Kanyuan, 2025. "Enabling fractured-vuggy reservoirs for large-scale gas storage: Green hydrogen, natural gas, and carbon dioxide," Renewable Energy, Elsevier, vol. 246(C).
    6. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Zhu, Suyang & Liu, Benjieming & Lei, Xuantong & Di, Chaojie, 2025. "Converting underground natural gas storage for hydrogen: A review of advantages, challenges and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    7. Guo, Yaohao & Liu, Fen & Qiu, Junjie & Xu, Zhi & Bao, Bo, 2022. "Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics," Energy, Elsevier, vol. 256(C).
    8. Song, Yilei & Song, Zhaojie & Mo, Yasi & Meng, Yufan & Zhou, Qiancheng & Jing, Yahao & Tian, Shouceng & Chen, Zhangxin, 2025. "Maturity-dependent thermodynamic and flow characteristics in continental shale oils," Energy, Elsevier, vol. 318(C).
    9. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Wang, Jianfeng & Zhu, Suyang & Ma, Haoming & Wu, Zhengbin, 2023. "Optimized lower pressure limit for condensate underground gas storage using a dynamic pseudo-component model," Energy, Elsevier, vol. 285(C).
    10. Hao, Yongmao & Li, Zongfa & Su, Yuliang & Kong, Chuixian & Chen, Hong & Meng, Yang, 2022. "Experimental investigation of CO2 storage and oil production of different CO2 injection methods at pore-scale and core-scale," Energy, Elsevier, vol. 254(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yilei & Song, Zhaojie & Chen, Zhangxin & Zhang, Lichao & Zhang, Yunfei & Feng, Dong & Wu, Zhengbin & Wu, Jiapeng, 2024. "Fluid phase behavior in multi-scale shale reservoirs with nano-confinement effect," Energy, Elsevier, vol. 289(C).
    2. Song, Yilei & Song, Zhaojie & Mo, Yasi & Meng, Yufan & Zhou, Qiancheng & Jing, Yahao & Tian, Shouceng & Chen, Zhangxin, 2025. "Maturity-dependent thermodynamic and flow characteristics in continental shale oils," Energy, Elsevier, vol. 318(C).
    3. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Li, Xiaobo & Di, Chaojie & Zhu, Suyang & Wang, Chaowen & Song, Yilei & Shi, Kanyuan, 2025. "Enabling fractured-vuggy reservoirs for large-scale gas storage: Green hydrogen, natural gas, and carbon dioxide," Renewable Energy, Elsevier, vol. 246(C).
    4. Deng, Peng & Ma, Haoming & Song, Jinghan & Peng, Xiaolong & Zhu, Suyang & Xue, Dan & Jiang, Liangliang & Chen, Zhangxin, 2025. "Carbon dioxide as cushion gas for large-scale underground hydrogen storage: Mechanisms and implications," Applied Energy, Elsevier, vol. 388(C).
    5. Wang, Qing & Zhang, Mengchuan & Zhou, Fujian & Fei, Hongtao & Yu, Sen & Su, Hang & Liang, Tianbo & Chen, Zhangxin, 2024. "Experiment and prediction of enhanced gas storage capacity in depleted gas reservoirs for clean energy applications," Renewable Energy, Elsevier, vol. 237(PC).
    6. Guo Wang & Rui Shen & Shengchun Xiong & Yuhao Mei & Qinghao Dong & Shasha Chu & Heying Su & Xuewei Liu, 2025. "Research Progress on Nano-Confinement Effects in Unconventional Oil and Gas Energy—With a Major Focus on Shale Reservoirs," Energies, MDPI, vol. 18(1), pages 1-41, January.
    7. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Zhu, Suyang & Liu, Benjieming & Lei, Xuantong & Di, Chaojie, 2025. "Converting underground natural gas storage for hydrogen: A review of advantages, challenges and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    8. Xiang Li & Songtao Wu & Yue Shen & Chanfei Wang, 2025. "Review on Changes in Shale Oil Property During CO 2 Injection," Energies, MDPI, vol. 18(5), pages 1-21, March.
    9. Wensong Huang & Ping Wang & Gang Hui & Xiangwen Kong & Yuepeng Jia & Lei Huang & Yufei Bai & Zhiyang Pi & Ye Li & Fuyu Yao & Penghu Bao & Yujie Zhang, 2024. "Unconventional Fracture Networks Simulation and Shale Gas Production Prediction by Integration of Petrophysics, Geomechanics and Fracture Characterization," Energies, MDPI, vol. 17(20), pages 1-16, October.
    10. Wu, Pengzhi & Liu, Changchun & Wen, Hu & Luo, Zhenmin & Fan, Shixing & Mi, Wansheng, 2023. "Experimental investigation of jet impingement during accidental release of liquid CO2," Energy, Elsevier, vol. 279(C).
    11. Yongling Zhang & Yangang Tang & Juntai Shi & Haoxiang Dai & Xinfeng Jia & Ge Feng & Bo Yang & Wenbin Li, 2024. "Phase Behavior and Rational Development Mode of a Fractured Gas Condensate Reservoir with High Pressure and Temperature: A Case Study of the Bozi 3 Block," Energies, MDPI, vol. 17(21), pages 1-17, October.
    12. Zhang, Xiaoying & Ma, Funing & Yin, Shangxian & Wallace, Corey D & Soltanian, Mohamad Reza & Dai, Zhenxue & Ritzi, Robert W. & Ma, Ziqi & Zhan, Chuanjun & Lü, Xiaoshu, 2021. "Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review," Applied Energy, Elsevier, vol. 303(C).
    13. Chu, Hongyang & Zhang, Liang & Lu, Huimin & Chen, Danyang & Wang, Jianping & Zhu, Weiyao & Lee, W. John, 2024. "Transient pressure prediction in large-scale underground natural gas storage: A deep learning approach and case study," Energy, Elsevier, vol. 311(C).
    14. Xing Zhao & Guiwen Wang & Dong Li & Song Wang & Quanwei Sun & Jin Lai & Zongyan Han & Yafeng Li & Yinghao Shen & Kunyu Wu, 2024. "Characteristics and Controlling Factors of Natural Fractures in Lacustrine Mixed Shale Oil Reservoirs: The Upper Member of the Lower Ganchaigou Formation in the Ganchaigou Area, Qaidam Basin, Western ," Energies, MDPI, vol. 17(23), pages 1-24, November.
    15. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    16. Wang, Zengding & Liu, Tengyu & Liu, Shanchao & Jia, Cunqi & Yao, Jun & Sun, Hai & Yang, Yongfei & Zhang, Lei & Delshad, Mojdeh & Sepehrnoori, Kamy & Zhong, Junjie, 2024. "Adsorption effects on CO2-oil minimum miscibility pressure in tight reservoirs," Energy, Elsevier, vol. 288(C).
    17. Yang, Mingyang & Huang, Shijun & Zhao, Fenglan & Sun, Haoyue & Chen, Xinyang, 2024. "Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory," Energy, Elsevier, vol. 294(C).
    18. Junming Lao & Haoran Cheng & Yuhe Wang & Hongqing Song, 2024. "Micro/Nanoparticle Characteristics and Flow in Porous Media: A Review towards Enhanced Oil Recovery," Energies, MDPI, vol. 17(16), pages 1-25, August.
    19. Liu, Jilong & Xie, Ranhong & Guo, Jiangfeng, 2024. "Numerical investigation of T2∗-based and T2-based petrophysical parameters frequency-dependent in shale oil," Energy, Elsevier, vol. 313(C).
    20. Zhang, Xue & Su, Yuliang & Li, Lei & Da, Qi'an & Hao, Yongmao & Wang, Wendong & Liu, Jiahui & Gao, Xiaogang & Zhao, An & Wang, Kaiyu, 2022. "Microscopic remaining oil initiation mechanism and formation damage of CO2 injection after waterflooding in deep reservoirs," Energy, Elsevier, vol. 248(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.