IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4803-d853057.html
   My bibliography  Save this article

Multi-Model-Based Predictive Control for Divisional Regulation in the Direct Air-Cooling Condenser

Author

Listed:
  • Zhiling Luo

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Qi Yao

    (Energy and Electricity Research Center, Jinan University, Zhuhai 519070, China)

Abstract

Flow distortions caused by ambient wind can have complex negative effects on the performance of direct air-cooling condensers, which use air as their cooling medium. A control-oriented model of the direct air-cooling condenser model, considering fan volumetric effectiveness and plume recirculation rate, was developed, and its linearization model was derived. The influences of fan volumetric effectiveness and plume recirculation rate on backpressure were analyzed, and the optimal backpressure was calculated. To improve both the transient performance and steady-state energy saving of the condenser, a multi-model-based predictive control strategy was proposed to divisionally adjust the fan array. Four division schemes of the direct air-cooling fan array constituted the local models, and in each division scheme, axial fans were divided into three groups according to the wind direction: windward fans, leeward fans, and other fans. The simulation results showed that the turbine backpressure can be increased by 15 kPa under the influence of plume recirculation and the reduction of the fan volumetric efficiency. The fan division adjustment strategy can achieve satisfactory control performance with switching rules.

Suggested Citation

  • Zhiling Luo & Qi Yao, 2022. "Multi-Model-Based Predictive Control for Divisional Regulation in the Direct Air-Cooling Condenser," Energies, MDPI, vol. 15(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4803-:d:853057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenhui Huang & Lei Chen & Lijun Yang & Xiaoze Du, 2021. "Energy-Saving Strategies of Axial Flow Fans for Direct Dry Cooling System," Energies, MDPI, vol. 14(11), pages 1-25, May.
    2. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    3. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Yang, Yongping & Wang, Lu & Zhao, Jin, 2019. "Performance maximization of a solar aided power generation (SAPG) plant with a direct air-cooled condenser in power-boosting mode," Energy, Elsevier, vol. 175(C), pages 891-899.
    4. Yang, Tingting & Wang, Wei & Zeng, Deliang & Liu, Jizhen & Cui, Can, 2017. "Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation," Energy, Elsevier, vol. 135(C), pages 394-404.
    5. Liu, Lihua & Du, Xiaoze & Xi, Xinming & Yang, Lijun & Yang, Yongping, 2013. "Experimental analysis of parameter influences on the performances of direct air cooled power generating unit," Energy, Elsevier, vol. 56(C), pages 117-123.
    6. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    2. Wenhui Huang & Lei Chen & Lijun Yang & Xiaoze Du, 2021. "Energy-Saving Strategies of Axial Flow Fans for Direct Dry Cooling System," Energies, MDPI, vol. 14(11), pages 1-25, May.
    3. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    4. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    5. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    6. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    7. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    8. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    9. Butler, C. & Grimes, R., 2014. "The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant," Energy, Elsevier, vol. 68(C), pages 886-895.
    10. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Heng Zhang & Na Wang & Kai Liang & Yang Liu & Haiping Chen, 2021. "Research on the Performance of Solar Aided Power Generation System Based on Annular Fresnel Solar Concentrator," Energies, MDPI, vol. 14(6), pages 1-23, March.
    12. Stevanovic, Vladimir D. & Ilic, Milica & Djurovic, Zeljko & Wala, Tadeusz & Muszynski, Slawomir & Gajic, Ivan, 2018. "Primary control reserve of electric power by feedwater flow rate change through an additional economizer – A case study of the thermal power plant “Nikola Tesla B”," Energy, Elsevier, vol. 147(C), pages 782-798.
    13. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    14. Oravec, Juraj & Bakošová, Monika & Trafczynski, Marian & Vasičkaninová, Anna & Mészáros, Alajos & Markowski, Mariusz, 2018. "Robust model predictive control and PID control of shell-and-tube heat exchangers," Energy, Elsevier, vol. 159(C), pages 1-10.
    15. Guijie Zheng & Wentao Wen & Hui Deng & Yang Cai, 2023. "Cluster Partition Operation Study of Air-Cooled Fan Groups in a Natural Wind Disturbance," Energies, MDPI, vol. 16(9), pages 1-20, April.
    16. Xin Wang & Gang Zhao & Xinhe Qu & Xiaoyong Yang & Jie Wang & Peng Wang, 2023. "Influence of Cooling Water Parameters on the Thermal Performance of the Secondary Circuit System of a Modular High-Temperature Gas-Cooled Reactor Nuclear Power Plant," Energies, MDPI, vol. 16(18), pages 1-17, September.
    17. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    18. Yongping Yang & Xiaoen Li & Zhiping Yang & Qing Wei & Ningling Wang & Ligang Wang, 2018. "The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling," Energies, MDPI, vol. 11(4), pages 1-16, March.
    19. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    20. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4803-:d:853057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.