IDEAS home Printed from
   My bibliography  Save this article

Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation


  • Yang, Tingting
  • Wang, Wei
  • Zeng, Deliang
  • Liu, Jizhen
  • Cui, Can


In order to save more energy and quicken the load change speed of air-cooled steam condenser units, the closed-loop optimized control on the fan speed is proposed and its realization is worth making intensive study. In this regard, the study presents the static and dynamic models of air-cooled steam condenser, and the characteristics of turbine power output affected by fan speed. Then, the structure of closed-loop control on fan speed is designed. Furthermore, two optimized methods on condenser pressure based on fan speed control are separately discussed: the optimum condenser pressure is solved by the genetic algorithm to save more energy, and the condenser pressure regulation is combined with traditional boiler-turbine coordinated control to accelerate the load response. Case study in our paper proves that the fan speed optimization can significantly improve the unit load-following capability, and furthermore unit coal consumption has been significantly reduced when the unit operating in a stable load condition.

Suggested Citation

  • Yang, Tingting & Wang, Wei & Zeng, Deliang & Liu, Jizhen & Cui, Can, 2017. "Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation," Energy, Elsevier, vol. 135(C), pages 394-404.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:394-404
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Moore, J. & Grimes, R. & Walsh, E. & O'Donovan, A., 2014. "Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser," Energy, Elsevier, vol. 69(C), pages 378-391.
    2. Wang, Wei & Liu, Jizhen & Zeng, Deliang & Lin, Zhongwei & Cui, Can, 2012. "Variable-speed technology used in power plants for better plant economics and grid stability," Energy, Elsevier, vol. 45(1), pages 588-594.
    3. Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2010. "Thermodynamic analysis of waste heat power generation system," Energy, Elsevier, vol. 35(7), pages 2824-2835.
    4. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    5. Yu, F.W. & Chan, K.T., 2007. "Modelling of a condenser-fan control for an air-cooled centrifugal chiller," Applied Energy, Elsevier, vol. 84(11), pages 1117-1135, November.
    6. Butler, C. & Grimes, R., 2014. "The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant," Energy, Elsevier, vol. 68(C), pages 886-895.
    7. Wang, Wei & Zeng, Deliang & Liu, Jizhen & Niu, Yuguang & Cui, Can, 2014. "Feasibility analysis of changing turbine load in power plants using continuous condenser pressure adjustment," Energy, Elsevier, vol. 64(C), pages 533-540.
    8. Manassaldi, Juan I. & Scenna, Nicolás J. & Mussati, Sergio F., 2014. "Optimization mathematical model for the detailed design of air cooled heat exchangers," Energy, Elsevier, vol. 64(C), pages 734-746.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Han, Zhonghe & Xiang, Peng, 2020. "Modeling condensate throttling to improve the load change performance of cogeneration units," Energy, Elsevier, vol. 192(C).
    3. Stevanovic, Vladimir D. & Ilic, Milica & Djurovic, Zeljko & Wala, Tadeusz & Muszynski, Slawomir & Gajic, Ivan, 2018. "Primary control reserve of electric power by feedwater flow rate change through an additional economizer – A case study of the thermal power plant “Nikola Tesla B”," Energy, Elsevier, vol. 147(C), pages 782-798.
    4. Oravec, Juraj & Bakošová, Monika & Galčíková, Lenka & Slávik, Michal & Horváthová, Michaela & Mészáros, Alajos, 2019. "Soft-constrained robust model predictive control of a plate heat exchanger: Experimental analysis," Energy, Elsevier, vol. 180(C), pages 303-314.
    5. Oravec, Juraj & Bakošová, Monika & Trafczynski, Marian & Vasičkaninová, Anna & Mészáros, Alajos & Markowski, Mariusz, 2018. "Robust model predictive control and PID control of shell-and-tube heat exchangers," Energy, Elsevier, vol. 159(C), pages 1-10.
    6. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    7. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:394-404. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.