IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3176-d564736.html
   My bibliography  Save this article

Energy-Saving Strategies of Axial Flow Fans for Direct Dry Cooling System

Author

Listed:
  • Wenhui Huang

    (Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, Beijing 102206, China
    School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Lei Chen

    (Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, Beijing 102206, China
    School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Lijun Yang

    (Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, Beijing 102206, China
    School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Xiaoze Du

    (Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, Beijing 102206, China
    School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

The operating conditions of axial flow fans are closely related to the thermo-flow characteristics of the mechanical draft direct dry cooling system. Moreover, the uneven distribution of cooling air driven by axial flow fans may lead to the deterioration of the heat transfer capacity of air-cooled condensers (ACCs). Therefore, developing energy-saving operating methods for axial flow fans is very meaningful. In this work, two kinds of adjustment strategies to make the flow field more uniform are proposed for a 2 × 300 MW direct dry cooling power-generating unit. The performance of ACCs in the prevailing wind direction is predicted with the help of the macro heat exchanger model. It is found that the inlet air temperatures of fans are significantly reduced by proposed strategies, especially at high wind speeds. Moreover, the minimum cooling air can meet the cooling demand of ACCs for the strategy which made the air flow rates of all fans consistent. Compared with the case without adjustment of fans, the total power consumption of the fan array was cut down effectively, up to 13.94% at the wind speed of 12 m/s. In conclusion, the energy efficiency of ACCs can be improved by the uniform flow field.

Suggested Citation

  • Wenhui Huang & Lei Chen & Lijun Yang & Xiaoze Du, 2021. "Energy-Saving Strategies of Axial Flow Fans for Direct Dry Cooling System," Energies, MDPI, vol. 14(11), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3176-:d:564736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, L.J. & Wang, M.H. & Du, X.Z. & Yang, Y.P., 2012. "Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant," Applied Energy, Elsevier, vol. 99(C), pages 402-413.
    2. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    3. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    4. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiling Luo & Qi Yao, 2022. "Multi-Model-Based Predictive Control for Divisional Regulation in the Direct Air-Cooling Condenser," Energies, MDPI, vol. 15(13), pages 1-18, June.
    2. Guijie Zheng & Wentao Wen & Hui Deng & Yang Cai, 2023. "Cluster Partition Operation Study of Air-Cooled Fan Groups in a Natural Wind Disturbance," Energies, MDPI, vol. 16(9), pages 1-20, April.
    3. Djordje S. Čantrak & Novica Z. Janković, 2022. "Turbulence Structure and Dynamics Investigation of Turbulent Swirl Flow in Pipe Using High-Speed Stereo PIV Data," Energies, MDPI, vol. 15(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    2. Zhiling Luo & Qi Yao, 2022. "Multi-Model-Based Predictive Control for Divisional Regulation in the Direct Air-Cooling Condenser," Energies, MDPI, vol. 15(13), pages 1-18, June.
    3. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    4. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    5. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    6. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    7. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    8. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    9. Weijia Wang & Lei Chen & Xianwei Huang & Lijun Yang & Xiaoze Du, 2017. "Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies," Energies, MDPI, vol. 10(12), pages 1-18, December.
    10. Butler, C. & Grimes, R., 2014. "The effect of wind on the optimal design and performance of a modular air-cooled condenser for a concentrated solar power plant," Energy, Elsevier, vol. 68(C), pages 886-895.
    11. Haotian Dong & Dawei Wan & Minghua Liu & Tiefeng Chen & Shasha Gao & Yuanbin Zhao, 2020. "Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers," Energies, MDPI, vol. 13(13), pages 1-20, June.
    12. O’Donovan, Alan & Grimes, Ronan & Sikora, Paul, 2019. "Enhanced performance of air-cooled thermal power plants using low temperature thermal storage," Applied Energy, Elsevier, vol. 250(C), pages 1673-1685.
    13. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    14. Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.
    15. Lorenzo Tieghi & Giovanni Delibra & Johan Van der Spuy & Alessandro Corsini, 2024. "Design of Sinusoidal Leading Edge for Low-Speed Axial Fans Operating under Inflow Distortion," Energies, MDPI, vol. 17(5), pages 1-17, February.
    16. Yongping Yang & Xiaoen Li & Zhiping Yang & Qing Wei & Ningling Wang & Ligang Wang, 2018. "The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling," Energies, MDPI, vol. 11(4), pages 1-16, March.
    17. Xianwei Huang & Lin Chen & Lijun Yang & Xiaoze Du & Yongping Yang, 2019. "Cooling Performance Enhancement of Air-Cooled Condensers by Guiding Air Flow," Energies, MDPI, vol. 12(18), pages 1-28, September.
    18. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    19. Yang, Lijun & Zhao, Xiaoli & Du, Xiaoze & Yang, Yongping, 2014. "Heat load capability matching principle and its applications to anti-freezing of air-cooled condenser," Applied Energy, Elsevier, vol. 127(C), pages 34-43.
    20. Jamil, Ahmad & Javed, Adeel & Wajid, Abdul & Zeb, Muhammad Omar & Ali, Majid & Khoja, Asif Hussain & Imran, Muhammad, 2021. "Multiparametric optimization for reduced condenser cooling water consumption in a degraded combined cycle gas turbine power plant from a water-energy nexus perspective," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3176-:d:564736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.