IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p65-d708966.html
   My bibliography  Save this article

Designing for the Environment: An Example of Multi-Criteria Analysis Used for Solar Hot Water System Selection

Author

Listed:
  • Agnieszka Żelazna

    (Faculty of Environmental Engineering, Lublin University of Technology, 40B Nadbystrzycka Str., 20-618 Lublin, Poland)

  • Justyna Gołębiowska

    (Faculty of Environmental Engineering, Lublin University of Technology, 40B Nadbystrzycka Str., 20-618 Lublin, Poland)

Abstract

In the European Union, the building sector accounts for more than 40% of final energy consumption, contributing to the deterioration of the quality of the environment. Among the various solutions that aim to reduce the negative environmental impact caused by the operation of buildings, solar hot water systems (SHW) are popular. The choice of a SHW system is associated with the comfort of use and the access to low-cost energy. The design guidelines include the technical parameters for system operation such as materials, dimensions, sizing and operation temperatures. However, the legitimacy of choosing a particular solution and the available technical parameters are key issues. In the presented study, a multi-criteria analysis was proposed as a basis for the proper selection of system parameters, e.g., collector type, solar tank volume. A model of the SHW system was used to calculate the possible solutions, ensuring the same comfort of usage for several design options. The analyzed model was then used for the calculation of three various indicators: Simple Payback Time (SPBT), Primary Energy consumption (PE) and IMPACT 2002+. The application of a multi-criteria analysis based on a Life Cycle Assessment allowed for beneficial solutions to be found from the point of view of economics, non-renewable resources and environmental protection.

Suggested Citation

  • Agnieszka Żelazna & Justyna Gołębiowska, 2021. "Designing for the Environment: An Example of Multi-Criteria Analysis Used for Solar Hot Water System Selection," Energies, MDPI, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:65-:d:708966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/65/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/65/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bas J. van Ruijven & Enrica De Cian & Ian Sue Wing, 2019. "Amplification of future energy demand growth due to climate change," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Agnieszka Żelazna & Justyna Gołębiowska & Agata Zdyb & Artur Pawłowski, 2020. "A Hybrid vs. On-Grid Photovoltaic System: Multicriteria Analysis of Environmental, Economic, and Technical Aspects in Life Cycle Perspective," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. Piotr Olczak & Dominika Matuszewska & Jadwiga Zabagło, 2020. "The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study," Energies, MDPI, vol. 13(7), pages 1-14, April.
    4. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Piotr Olczak & Dominik Kryzia & Dominika Matuszewska & Marta Kuta, 2021. "“My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland," Energies, MDPI, vol. 14(1), pages 1-16, January.
    3. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    6. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    7. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    8. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    9. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    10. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    11. Simone Lucatello & Roberto Sánchez, 2022. "Climate Change in North America: Risks, Impacts, and Adaptation. A Reflection Based on the IPCC Report AR6 - 2022," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(4), pages 1-18, Octubre -.
    12. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    13. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    14. Alejandra Martínez – Martínez & Silviano Esteve – Pérez & Salvador Gil – Pareja & Rafael Llorca - Vivero, 2023. "In search of factors that explain the impact of climate change on international trade," Working Papers 2310, Department of Applied Economics II, Universidad de Valencia.
    15. Ferdinando Salata & Iacopo Golasi & Alessandro Poliziani & Antonio Futia & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Management Optimization of the Luminous Flux Regulation of a Lighting System in Road Tunnels. A First Approach to the Exertion of Predictive Control Systems," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    16. Congguang Zhang & Jiaming Sun & Jieying Ma & Fuqing Xu & Ling Qiu, 2019. "Environmental Assessment of a Hybrid Solar-Biomass Energy Supplying System: A Case Study," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    17. Magdalena Zdeb & Marta Bis & Artur Przywara, 2023. "Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production," Energies, MDPI, vol. 16(1), pages 1-14, January.
    18. Esteban Zalamea-Leon & Edgar A. Barragán-Escandón & John Calle-Sigüencia & Mateo Astudillo-Flores & Diego Juela-Quintuña, 2021. "Residential Solar Thermal Performance Considering Self-Shading Incidence between Tubes in Evacuated Tube and Flat Plate Collectors," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    19. Ding, Ning & Liu, Jingru & Yang, Jianxin & Yang, Dong, 2017. "Comparative life cycle assessment of regional electricity supplies in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 47-59.
    20. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:65-:d:708966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.