IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2726-d551561.html
   My bibliography  Save this article

Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning

Author

Listed:
  • Sarra Houidi

    (Laboratoire IBISC (Informatique, BioInformatique, Systèmes Complexes), EA 4526, University Evry/Paris-Saclay, 91020 Evry-Courcouronnes, France)

  • Dominique Fourer

    (Laboratoire IBISC (Informatique, BioInformatique, Systèmes Complexes), EA 4526, University Evry/Paris-Saclay, 91020 Evry-Courcouronnes, France)

  • François Auger

    (Institut de Recherche en Energie Electrique de Nantes Atlantique (IREENA), EA 4642, University of Nantes, 44602 Saint-Nazaire, France)

  • Houda Ben Attia Sethom

    (Laboratoire des Systèmes Electriques, Université de Tunis El Manar, Tunis 1002, Tunisia)

  • Laurence Miègeville

    (Institut de Recherche en Energie Electrique de Nantes Atlantique (IREENA), EA 4642, University of Nantes, 44602 Saint-Nazaire, France)

Abstract

Non-Intrusive Load Monitoring (NILM) refers to the analysis of the aggregated current and voltage measurements of Home Electrical Appliances (HEAs) recorded by the house electrical panel. Such methods aim to identify each HEA for a better control of the energy consumption and for future smart grid applications. Here, we are interested in an event-based NILM pipeline, and particularly in the HEAs’ recognition step. This paper focuses on the selection of relevant and understandable features for efficiently discriminating distinct HEAs. Our contributions are manifold. First, we introduce a new publicly available annotated dataset of individual HEAs described by a large set of electrical features computed from current and voltage measurements in steady-state conditions. Second, we investigate through a comparative evaluation a large number of new methods resulting from the combination of different feature selection techniques with several classification algorithms. To this end, we also investigate an original feature selection method based on a deep neural network architecture. Then, through a machine learning framework, we study the benefits of these methods for improving Home Electrical Appliance (HEA) identification in a supervised classification scenario. Finally, we introduce new transfer learning results, which confirm the relevance and the robustness of the selected features learned from our proposed dataset when they are transferred to a larger dataset. As a result, the best investigated methods outperform the previous state-of-the-art results and reach a maximum recognition accuracy above 99% on the PLAID evaluation dataset.

Suggested Citation

  • Sarra Houidi & Dominique Fourer & François Auger & Houda Ben Attia Sethom & Laurence Miègeville, 2021. "Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning," Energies, MDPI, vol. 14(9), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2726-:d:551561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    2. Ce Peng & Guoying Lin & Shaopeng Zhai & Yi Ding & Guangyu He, 2020. "Non-Intrusive Load Monitoring via Deep Learning Based User Model and Appliance Group Model," Energies, MDPI, vol. 13(21), pages 1-19, October.
    3. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    4. Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Lee, Yoonkyung & Lin, Yi & Wahba, Grace, 2004. "Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 67-81, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Yue & Chen, Zhihua & Wang, Zhe & Sun, Yifu & Chen, Yixing, 2023. "Attention mechanism-based transfer learning model for day-ahead energy demand forecasting of shopping mall buildings," Energy, Elsevier, vol. 270(C).
    2. Pengyi Liao & Jun Yan & Jean Michel Sellier & Yongxuan Zhang, 2022. "TADA: A Transferable Domain-Adversarial Training for Smart Grid Intrusion Detection Based on Ensemble Divergence Metrics and Spatiotemporal Features," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    2. Mao Wang & Dandan Liu & Changzhi Li, 2023. "Non-Intrusive Load Decomposition Based on Instance-Batch Normalization Networks," Energies, MDPI, vol. 16(7), pages 1-15, March.
    3. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    4. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    5. Engin Tas & Ayca Hatice Atli, 2024. "Stock Price Ranking by Learning Pairwise Preferences," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 513-528, February.
    6. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    7. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    9. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    10. Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
    11. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    12. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    13. Keiji Tatsumi & Tetsuzo Tanino, 2014. "Support vector machines maximizing geometric margins for multi-class classification," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 815-840, October.
    14. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    15. Yang, Chao & Liang, Gaoqi & Liu, Jinjie & Liu, Guolong & Yang, Hongming & Zhao, Junhua & Dong, Zhaoyang, 2023. "A non-intrusive carbon emission accounting method for industrial corporations from the perspective of modern power systems," Applied Energy, Elsevier, vol. 350(C).
    16. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    17. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    18. Inoussa Laouali & Isaías Gomes & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili & Antonio Ruano, 2022. "Energy Disaggregation Using Multi-Objective Genetic Algorithm Designed Neural Networks," Energies, MDPI, vol. 15(23), pages 1-29, November.
    19. Xi He & Heng Dong & Wanli Yang & Jun Hong, 2022. "A Novel Denoising Auto-Encoder-Based Approach for Non-Intrusive Residential Load Monitoring," Energies, MDPI, vol. 15(6), pages 1-15, March.
    20. Abramovich, Felix & Pensky, Marianna, 2019. "Classification with many classes: Challenges and pluses," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2726-:d:551561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.