IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2687-d550122.html
   My bibliography  Save this article

Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment

Author

Listed:
  • Ali A. Hmad

    (Department of Mechanical Engineering, University of Detroit Mercy, 4001 W. McNichols Rd., Detroit, MI 48221, USA)

  • Nihad Dukhan

    (Department of Mechanical Engineering, University of Detroit Mercy, 4001 W. McNichols Rd., Detroit, MI 48221, USA)

Abstract

A new study investigating the cooling efficacy of air flow inside open-cell metal foam embedded in aluminum models of fuel-cell stacks is described. A model based on a commercial stack was simulated and tested experimentally. This stack has three proton exchange membrane (PEM) fuel cells, each having an active area of 100 cm 2 , with a total output power of 500 W. The state-of-the-art cooling of this stack employs water in serpentine flow channels. The new design of the current investigation replaces these channels with metal foam and replaces the actual fuel cells with aluminum plates. The constant heat flux on these plates is equivalent to the maximum heat dissipation of the stack. Forced air is employed as the coolant. The aluminum foam used had an open-pore size of 0.65 mm and an after-compression porosity of 60%. Local temperatures in the stack and pumping power were calculated for various air-flow velocities in the range of 0.2–1.5 m/s by numerical simulation and were determined by experiments. This range of air speed corresponds to the Reynolds number based on the hydraulic diameter in the range of 87.6–700.4. Internal and external cells of the stack were investigated. In the simulations, and the thermal energy equations were solved invoking the local thermal non-equilibrium model—a more realistic treatment for airflow in a metal foam. Good agreement between the simulation and experiment was obtained for the local temperatures. As for the pumping power predicted by simulation and obtained experimentally, there was an average difference of about 18.3%. This difference has been attributed to the poor correlation used by the CFD package (ANSYS) for pressure drop in a metal foam. This study points to the viability of employing metal foam for cooling of fuel-cell systems.

Suggested Citation

  • Ali A. Hmad & Nihad Dukhan, 2021. "Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment," Energies, MDPI, vol. 14(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2687-:d:550122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    2. Valizade, M. & Heyhat, M.M. & Maerefat, M., 2020. "Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption," Renewable Energy, Elsevier, vol. 145(C), pages 261-269.
    3. Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
    4. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Unknown, 2004. "End Materials," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 19(4), pages 1-1.
    6. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ercelik, Mustafa & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Efficient X-ray CT-based numerical computations of structural and mass transport properties of nickel foam-based GDLs for PEFCs," Energy, Elsevier, vol. 262(PB).
    2. Wei Wang & Liang Ding & Fangming Han & Yong Shuai & Bingxi Li & Bengt Sunden, 2022. "Parametric Study on Thermo-Hydraulic Performance of NACA Airfoil Fin PCHEs Channels," Energies, MDPI, vol. 15(14), pages 1-15, July.
    3. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Aidar Khairullin & Aigul Haibullina & Alex Sinyavin & Denis Balzamov & Vladimir Ilyin & Liliya Khairullina & Veronika Bronskaya, 2022. "Heat Transfer in 3D Laguerre–Voronoi Open-Cell Foams under Pulsating Flow," Energies, MDPI, vol. 15(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    3. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    5. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    6. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
    7. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    8. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    9. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    10. Ashley Fly & Kyoungyoun Kim & John Gordon & Daniel Butcher & Rui Chen, 2019. "Liquid Water Transport in Porous Metal Foam Flow-Field Fuel Cells: A Two-Phase Numerical Modelling and Ex-Situ Experimental Study," Energies, MDPI, vol. 12(7), pages 1-14, March.
    11. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    12. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    13. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    14. Sunil Herat, 2008. "Environmental impacts and use of brominated flame retardants in electrical and electronic equipment," Environment Systems and Decisions, Springer, vol. 28(4), pages 348-357, December.
    15. Okur, Osman & Alper, Erdogan & Almansoori, Ali, 2014. "Optimization of catalyst preparation conditions for direct sodium borohydride fuel cell using response surface methodology," Energy, Elsevier, vol. 67(C), pages 97-105.
    16. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    17. Teerapath Limboonruang & Muyiwa Oyinlola & Dani Harmanto & Pracha Bunyawanichakul & Nittalin Phunapai, 2023. "Optimizing Solar Parabolic Trough Receivers with External Fins: An Experimental Study on Enhancing Heat Transfer and Thermal Efficiency," Energies, MDPI, vol. 16(18), pages 1-22, September.
    18. Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).
    19. Boyacı San, Fatma Gül & Okur, Osman & İyigün Karadağ, Çiğdem & Isik-Gulsac, Isil & Okumuş, Emin, 2014. "Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method," Energy, Elsevier, vol. 71(C), pages 160-169.
    20. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2687-:d:550122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.