IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp261-269.html
   My bibliography  Save this article

Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption

Author

Listed:
  • Valizade, M.
  • Heyhat, M.M.
  • Maerefat, M.

Abstract

The effects of using copper metal foam as a volumetric absorber as well as heat transfer enhancement technique on the thermal characteristics of a direct absorption parabolic trough solar collector are examined experimentally. The thermal performance, temperature difference and friction factor for PTC in three cases (full porous, semi-porous and without porous) are investigated and compared with each other. The experiments were performed in different flow rates and inlet temperatures. The thermal performance of solar collector is calculated based on ASHRAE Standard 93-2010. Obtained results indicate that using porous foam increase the friction factor dramatically. Moreover, the maximum temperature differences for full-porous, semi-porous and free porous are 12.2 °C, 8.8 °C and 3.3 °C, respectively. It is found that by increasing the flow rate and decreasing the inlet temperature, the thermal efficiency of the collector can be enhanced. In addition, the maximum thermal efficiency improvements due to using full metal foam and semi metal foam compared to that of free metal foam are 171.2% and 119.6%, respectively.

Suggested Citation

  • Valizade, M. & Heyhat, M.M. & Maerefat, M., 2020. "Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption," Renewable Energy, Elsevier, vol. 145(C), pages 261-269.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:261-269
    DOI: 10.1016/j.renene.2019.05.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    2. Ali A. Hmad & Nihad Dukhan, 2021. "Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment," Energies, MDPI, vol. 14(9), pages 1-19, May.
    3. Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
    4. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    5. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    6. Chen, Heng & Mansir, Ibrahim B. & Chauhan, Bhupendra Singh & Al-Zahrani, Ahmed & Deifalla, Ahmed & Hua, Yinhai & Peng, Fan, 2023. "A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module," Renewable Energy, Elsevier, vol. 215(C).
    7. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
    9. Teerapath Limboonruang & Muyiwa Oyinlola & Dani Harmanto & Pracha Bunyawanichakul & Nittalin Phunapai, 2023. "Optimizing Solar Parabolic Trough Receivers with External Fins: An Experimental Study on Enhancing Heat Transfer and Thermal Efficiency," Energies, MDPI, vol. 16(18), pages 1-22, September.
    10. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:261-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.