Modelling of a Torrefaction Process Using Thermal Model Object
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, M.J. & Huang, Y.F. & Chiueh, P.T. & Kuan, W.H. & Lo, S.L., 2012. "Microwave-induced torrefaction of rice husk and sugarcane residues," Energy, Elsevier, vol. 37(1), pages 177-184.
- Yan, Beibei & Jiao, Liguo & Li, Jian & Zhu, Xiaochao & Ahmed, Sarwaich & Chen, Guanyi, 2021. "Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance," Energy, Elsevier, vol. 220(C).
- Sangjan, Amornrat & Ngamsiri, Pornthip & Klomkliang, Nikom & Wu, Kevin C.-W. & Matsagar, Babasaheb M. & Ratchahat, Sakhon & Liu, Chen-Guang & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2020. "Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis," Renewable Energy, Elsevier, vol. 154(C), pages 1204-1217.
- Huang, Yu-Fong & Sung, Hsuan-Te & Chiueh, Pei-Te & Lo, Shang-Lien, 2016. "Co-torrefaction of sewage sludge and leucaena by using microwave heating," Energy, Elsevier, vol. 116(P1), pages 1-7.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
- Hu, Junhao & Qi, Nianxiang & Yang, Haiping & Liu, Sumin & Chen, Wei & Cheng, Wei & Chen, Hanping, 2024. "Investigation on steam co-gasification of torrefied biomass and coal: Thermal behavior, reactivity, product characteristic and synergy," Energy, Elsevier, vol. 313(C).
- Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
- Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
- Jiao, Liguo & Li, Jian & Yan, Beibei & Chen, Guanyi & Ahmed, Sarwaich, 2022. "Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling," Applied Energy, Elsevier, vol. 319(C).
- Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
- Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
- Esteban Valdez & Lope G. Tabil & Edmund Mupondwa & Duncan Cree & Hadi Moazed, 2021. "Microwave Torrefaction of Oat Hull: Effect of Temperature and Residence Time," Energies, MDPI, vol. 14(14), pages 1-15, July.
- Chen, Wei-Hsin & Biswas, Partha Pratim & Chang, Jo-Shu & Ryšavý, Jiří & Čespiva, Jakub, 2025. "A review of comparative life cycle assessment of dry, wet, and microwave torrefaction pathways for sustainable bioenergy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
- Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
- Zheng, Kaiyue & Hu, Song & Gong, Zhijie & Jia, Mengchuan & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2025. "Interaction among cellulose, hemicellulose and lignin during pressurized pyrolysis: Importance of deoxygenation and aromatization reactions," Energy, Elsevier, vol. 314(C).
- Zhu, Xiaochao & Sun, Xiyue & Yan, Beibei & Hou, Donghao & Li, Songjiang & Zhou, Shengquan & Chen, Guanyi, 2025. "Effect of Mg-additive and carrier gas in flue gas torrefaction and gasification: Fuel properties, kinetics and thermodynamic analysis," Energy, Elsevier, vol. 328(C).
- Gan, Qingqing & Xu, Jiang & Peng, Shoujian & Yan, Fazhi & Wang, Ruifang & Cai, Guoliang, 2021. "Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal," Energy, Elsevier, vol. 237(C).
- Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
- Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
- Seraj, Somaye & Azargohar, Ramin & Dalai, Ajay K., 2025. "Dry torrefaction and hydrothermal carbonization of biomass to fuel pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2481-:d:544117. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.