IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2430-d542648.html
   My bibliography  Save this article

Economics of Battery Use in Agriculture: Economic Viability of Renewable Energy Complemented with Batteries in Agriculture

Author

Listed:
  • Clemens Fuchs

    (Department of Agriculture and Food Sciences, University of Applied Sciences, 17033 Neubrandenburg, Germany)

  • Axel Poehls

    (Department of Agriculture and Food Sciences, University of Applied Sciences, 17033 Neubrandenburg, Germany)

  • Katharina Skau

    (Department of Agriculture and Food Sciences, University of Applied Sciences, 17033 Neubrandenburg, Germany)

  • Joachim Kasten

    (Department of Agriculture and Food Sciences, University of Applied Sciences, 17033 Neubrandenburg, Germany)

Abstract

The production of renewable energy fluctuates in terms of sun and wind and must be supplemented by storage in the system. On an individual basis, i.e., for centralized electricity production and predominantly self-consumption, the use of batteries is considered here. Possible future development scenarios were simulated based on current price relationships (status quo). In the status quo, a selling price for PV electricity of 13 Euro cents (ct)ct/kWh was assumed with a production cost of 11 ct/kWh. The selling price of wind power is 5 ct/kWh with a production cost of 3 ct/kWh. The cost of storing electricity in a battery increases the price by 33 ct/kWh. A price of 20 ct/kWh is assumed for electricity purchases by companies. In the status quo, the use of batteries is not economical given the assumed price relationships. Changing the framework conditions, such as those of the legislature in Germany with the nuclear power phase-out and in the EU with the coal exit and decarbonization, will lead to increased availability of (fluctuating) renewable electricity, especially during the day. The purchase of electricity at other times, when the supply is scarce, can lead to increased electricity prices, especially at night. Together with falling costs for storage, the use of batteries for centralized power generators could be very interesting in the future. The method used in this study is nonlinear optimization of the target function costs of electricity supply in the developed simulation model. The results can also be transferred to other countries, as the assumed trends apply worldwide.

Suggested Citation

  • Clemens Fuchs & Axel Poehls & Katharina Skau & Joachim Kasten, 2021. "Economics of Battery Use in Agriculture: Economic Viability of Renewable Energy Complemented with Batteries in Agriculture," Energies, MDPI, vol. 14(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2430-:d:542648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "Aggregated impact of coordinated commercial-scale battery energy storage systems on network peak demand, and financial outcomes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Bernard Knutel & Anna Pierzyńska & Marcin Dębowski & Przemysław Bukowski & Arkadiusz Dyjakon, 2020. "Assessment of Energy Storage from Photovoltaic Installations in Poland Using Batteries or Hydrogen," Energies, MDPI, vol. 13(15), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    2. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    3. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1, January.
    4. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    5. Talal Yusaf & K. Kadirgama & Steve Hall & Louis Fernandes, 2022. "The Future of Sustainable Aviation Fuels, Challenges and Solutions," Energies, MDPI, vol. 15(21), pages 1-4, November.
    6. Piotr Olczak & Dominika Matuszewska, 2023. "Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power," Energies, MDPI, vol. 16(16), pages 1-11, August.
    7. Alfredo Višković & Vladimir Franki & Angela Bašić-Šiško, 2022. "City-Level Transition to Low-Carbon Economy," Energies, MDPI, vol. 15(5), pages 1-24, February.
    8. Małgorzata Rataj & Justyna Berniak-Woźny & Marlena Plebańska, 2021. "Poland as the EU Leader in Terms of Photovoltaic Market Growth Dynamics—Behind the Scenes," Energies, MDPI, vol. 14(21), pages 1-19, October.
    9. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
    10. Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2021. "Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
    11. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    12. Wen, Kerui & Li, Weidong & Yu, Samson Shenglong & Li, Ping & Shi, Peng, 2022. "Optimal intra-day operations of behind-the-meter battery storage for primary frequency regulation provision: A hybrid lookahead method," Energy, Elsevier, vol. 247(C).
    13. Woo-sung Kim & Hyunsang Eom & Youngsung Kwon, 2021. "Optimal Design of Photovoltaic Connected Energy Storage System Using Markov Chain Models," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    14. Lin, Jin & Dong, Jun & Dou, Xihao & Liu, Yao & Yang, Peiwen & Ma, Tongtao, 2022. "Psychological insights for incentive-based demand response incorporating battery energy storage systems: A two-loop Stackelberg game approach," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2430-:d:542648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.