IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2036-d1635756.html
   My bibliography  Save this article

Development of Renewable Energy Sources in Poland and Stability of Power Grids—Challenges, Technologies, and Adaptation Strategies

Author

Listed:
  • Konrad Henryk Bachanek

    (Research Center for Management of Energy Sector, Institute of Management, University of Szczecin, Cukrowa Street 8, 71-004 Szczecin, Poland)

  • Wojciech Drożdż

    (Research Center for Management of Energy Sector, Institute of Management, University of Szczecin, Cukrowa Street 8, 71-004 Szczecin, Poland)

  • Maciej Kolon

    (Independent Researcher, 71-004 Szczecin, Poland)

Abstract

The development of renewable energy sources (RESs) is a key element of the energy policy in Poland and the European Union. The transition to green energy aims to reduce greenhouse gas emissions, enhance energy security, and decrease dependence on fossil fuels. In Poland, the RES sector, particularly photovoltaics and wind energy, is growing, which is changing the operation of energy generation. However, the increasing share of RESs in the energy mix presents challenges for the stability of the national power grid. This study focuses on renewable energy sources in Poland because the development of RESs is crucial for the country’s energy transition. Poland is striving to achieve its climate goals and reduce dependence on fossil fuels, and increasing the share of RESs in the national energy mix is a key element of energy policy. The transition to green energy aims to reduce greenhouse gas emissions, enhance energy security, and support sustainable development in Poland. (1) The aim of this article was to analyze the impact of RES development on power grids in Poland, identify key issues, and review adaptation strategies. (2) Methods such as a literature review and statistical data analysis were used to build scenarios. (3) In Poland, the RES sector is being developed through the application of both national and European policies. The main sources of renewable energy are wind energy and photovoltaics. (4) The introduction of technologies such as energy storage systems, smart grids, and advanced management strategies is a key response to the challenges posed by the development of renewable energy in Poland, particularly in relation to the stability of the power grid.

Suggested Citation

  • Konrad Henryk Bachanek & Wojciech Drożdż & Maciej Kolon, 2025. "Development of Renewable Energy Sources in Poland and Stability of Power Grids—Challenges, Technologies, and Adaptation Strategies," Energies, MDPI, vol. 18(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2036-:d:1635756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maciej Serowaniec, 2021. "Sustainable Development Policy and Renewable Energy in Poland," Energies, MDPI, vol. 14(8), pages 1-8, April.
    2. Pasquale Marcello Falcone, 2023. "Sustainable Energy Policies in Developing Countries: A Review of Challenges and Opportunities," Energies, MDPI, vol. 16(18), pages 1-19, September.
    3. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    4. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    5. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    6. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    7. Chuan Huang & Changjian Liu & Ming Zhong & Hanbing Sun & Tianhang Gao & Yonglin Zhang, 2024. "Research on Wind Turbine Location and Wind Energy Resource Evaluation Methodology in Port Scenarios," Sustainability, MDPI, vol. 16(3), pages 1-24, January.
    8. Jan L. Bednarczyk & Katarzyna Brzozowska-Rup & Sławomir Luściński, 2021. "Determinants of the Energy Development Based on Renewable Energy Sources in Poland," Energies, MDPI, vol. 14(20), pages 1-21, October.
    9. Anna Dębicka & Karolina Olejniczak & Bartosz Radomski & Dariusz Kurz & Dawid Poddubiecki, 2024. "Renewable Energy Investments in Poland: Goals, Socio-Economic Benefits, and Development Directions," Energies, MDPI, vol. 17(10), pages 1-20, May.
    10. Muhumuza Ezra Rubanda & Livingstone Senyonga & Mohammed Ngoma & Muyiwa S. Adaramola, 2022. "Electricity Trading in Energy Market Integration: A Theoretical Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    11. Bernard Knutel & Anna Pierzyńska & Marcin Dębowski & Przemysław Bukowski & Arkadiusz Dyjakon, 2020. "Assessment of Energy Storage from Photovoltaic Installations in Poland Using Batteries or Hydrogen," Energies, MDPI, vol. 13(15), pages 1-16, August.
    12. Piotr Zuk & Pawel Zuk, 2022. "Prosumers in Action: The Analysis of Social Determinants of Photovoltaic Development and Prosumer Strategies in Poland," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 294-306, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    2. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    3. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    4. Jakub Stolarski & Ewelina Olba-Zięty & Mariusz Jerzy Stolarski, 2024. "Economic Analysis of Renewable Energy Generation from a Multi-Energy Installation in a Single-Family House," Energies, MDPI, vol. 17(24), pages 1-21, December.
    5. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    6. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    7. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    8. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
    9. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    10. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Giulio Paolo Agnusdei & Tomas Balezentis, 2023. "Energy-space concept for the transition to a low-carbon energy society," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14953-14973, December.
    11. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    12. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    13. Iwona Zdonek & Anna Mularczyk & Marian Turek & Stanisław Tokarski, 2023. "Perception of Prosumer Photovoltaic Technology in Poland: Usability, Ease of Use, Attitudes, and Purchase Intentions," Energies, MDPI, vol. 16(12), pages 1-18, June.
    14. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    15. Liu, Yang & Zhang, Yuchen & Zhao, Xiaoli & Farnoosh, Arash & Ma, Ruoran, 2024. "Synergistic effect of environmental governance instruments embedded in social contexts: A case study of China," Ecological Economics, Elsevier, vol. 220(C).
    16. Chibuike Chiedozie Ibebuchi, 2025. "Day-Ahead Energy Price Forecasting with Machine Learning: Role of Endogenous Predictors," Forecasting, MDPI, vol. 7(2), pages 1-16, April.
    17. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    18. Aylin Erdoğdu & Faruk Dayi & Ahmet Yanik & Ferah Yildiz & Farshad Ganji, 2025. "Innovative Solutions for Combating Climate Change: Advancing Sustainable Energy and Consumption Practices for a Greener Future," Sustainability, MDPI, vol. 17(6), pages 1-39, March.
    19. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Chaikumbung, Mayula, 2025. "The influence of national cultures on preferences and willingness to pay for renewable energy in Developing countries: A meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2036-:d:1635756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.