Day-Ahead Energy Price Forecasting with Machine Learning: Role of Endogenous Predictors
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lutz Kilian, 2008.
"The Economic Effects of Energy Price Shocks,"
Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
- Kilian, Lutz, 2007. "The Economic Effects of Energy Price Shocks," CEPR Discussion Papers 6559, C.E.P.R. Discussion Papers.
- Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
- Dong-Jin Bae & Bo-Sung Kwon & Kyung-Bin Song, 2021. "XGBoost-Based Day-Ahead Load Forecasting Algorithm Considering Behind-the-Meter Solar PV Generation," Energies, MDPI, vol. 15(1), pages 1-16, December.
- Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
- Edna S. Solano & Carolina M. Affonso, 2023. "Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
- Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
- Ilyes Abidi & Mariem Nsaibi, 2024. "Assessing the Impact of Renewable Energy in Mitigating Climate Change: A Comprehensive Study on Effectiveness and Adaptation Support," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 442-454, May.
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- Coker, Phil J. & Bloomfield, Hannah C. & Drew, Daniel R. & Brayshaw, David J., 2020. "Interannual weather variability and the challenges for Great Britain’s electricity market design," Renewable Energy, Elsevier, vol. 150(C), pages 509-522.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
- Huixin Liu & Xiaodong Shen & Xisheng Tang & Junyong Liu, 2023. "Day-Ahead Electricity Price Probabilistic Forecasting Based on SHAP Feature Selection and LSTNet Quantile Regression," Energies, MDPI, vol. 16(13), pages 1-17, July.
- Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
- Ketterer, Janina C., 2014.
"The impact of wind power generation on the electricity price in Germany,"
Energy Economics, Elsevier, vol. 44(C), pages 270-280.
- Janina Ketterer, 2012. "The Impact of Wind Power Generation on the Electricity Price in Germany," ifo Working Paper Series 143, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Castello, Oleksandr & Resta, Marina, 2025. "Univariate and multivariate forecasting of the electricity futures curve using Dynamic Recurrent Neural Networks," Applied Energy, Elsevier, vol. 394(C).
- Ciaran O’Connor & Mohamed Bahloul & Steven Prestwich & Andrea Visentin, 2025. "A Review of Electricity Price Forecasting Models in the Day-Ahead, Intra-Day, and Balancing Markets," Energies, MDPI, vol. 18(12), pages 1-40, June.
- Brusaferri, Alessandro & Ballarino, Andrea & Grossi, Luigi & Laurini, Fabrizio, 2025. "On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices," Applied Energy, Elsevier, vol. 398(C).
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
- Deniz Kenan Kılıç & Peter Nielsen & Amila Thibbotuwawa, 2024. "Intraday Electricity Price Forecasting via LSTM and Trading Strategy for the Power Market: A Case Study of the West Denmark DK1 Grid Region," Energies, MDPI, vol. 17(12), pages 1-15, June.
- Mao, Xuehui & Chen, Shanlin & Yu, Hanxin & Duan, Liwu & He, Yingjie & Chu, Yinghao, 2025. "Simplicity in dynamic and competitive electricity markets: A case study on enhanced linear models versus complex deep-learning models for day-ahead electricity price forecasting," Applied Energy, Elsevier, vol. 383(C).
- Huang, Siwan & Shi, Jianheng & Wang, Baoyue & An, Na & Li, Li & Hou, Xuebing & Wang, Chunsen & Zhang, Xiandong & Wang, Kai & Li, Huilin & Zhang, Sui & Zhong, Ming, 2024. "A hybrid framework for day-ahead electricity spot-price forecasting: A case study in China," Applied Energy, Elsevier, vol. 373(C).
- Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Adela Bâra & Simona-Vasilica Oprea & Bogdan George Tudorică, 2024. "From the East-European Regional Day-Ahead Markets to a Global Electricity Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2525-2557, June.
- Belenguer, E. & Segarra-Tamarit, J. & Pérez, E. & Vidal-Albalate, R., 2025. "Short-term electricity price forecasting through demand and renewable generation prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 350-361.
- Aliyon, Kasra & Ritvanen, Jouni, 2024. "Deep learning-based electricity price forecasting: Findings on price predictability and European electricity markets," Energy, Elsevier, vol. 308(C).
- Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
- Pablo Alejandro Mendez-Santos & Nathalia Alexandra Chacón-Reino & Luis Fernando Guerrero-Vásquez & Jorge Osmani Ordoñez-Ordoñez & Paul Andrés Chasi-Pesantez, 2025. "Estimation and Forecasting of the Average Unit Cost of Energy Supply in a Distribution System Using Multiple Linear Regression and ARIMAX Modeling in Ecuador," Energies, MDPI, vol. 18(14), pages 1-33, July.
- Wang, Guanghao & Sbai, Erwann & Sheng, Mingyue Selena & Tao, Miaomiao, 2025. "News sentiment, climate conditions, and New Zealand electricity market: A real-time bidding policy perspective," Energy, Elsevier, vol. 318(C).
- Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
- van Zyl, Corne & Ye, Xianming & Naidoo, Raj, 2024. "Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: A comparative analysis of Grad-CAM and SHAP," Applied Energy, Elsevier, vol. 353(PA).
- Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:18-:d:1630761. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i2p18-d1630761.html