IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2058-d532119.html
   My bibliography  Save this article

Miniaturization of an Offshore Platform with Medium-Frequency Offshore Wind Farm and MMC-HVDC Technology

Author

Listed:
  • Zheren Zhang

    (Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yingjie Tang

    (Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheng Xu

    (Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Offshore wind power has great development potential, for which the key factors are reliable and economical wind farms and integration systems. This paper proposes a medium-frequency wind farm and MMC-HVDC integration system. In the proposed scheme, the operating frequency of the offshore wind farm and its power collection system is increased from the conventional 50/60 Hz rate to the medium-frequency range, i.e., 100–400 Hz; the offshore wind power is transmitted to the onshore grid via the modular multilevel converter-based high-voltage direct current transmission (MMC-HVDC). First, this paper explains the principles of the proposed scheme in terms of the system topology and control strategy aspects. Then, the impacts of increasing the offshore system operating frequency on the main parameters of the offshore station are discussed. As the frequency increases, it is shown that the actual value of the electrical equipment, such as the transformers, the arm inductors, and the SM capacitors of the rectifier MMC, can be reduced, which means smaller platforms are required for the step-up transformer station and the converter station. Then, the system operation characteristics are analyzed, with the results showing that the power losses in the system increase slightly with the increase of the offshore AC system frequency. Based on time domain simulation results from power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC), it is noted that the dynamic behavior of the system is not significantly affected with the increase of the offshore AC system frequency in most scenarios. In this way, the technical feasibility of the proposed offshore platform miniaturization technology is proven.

Suggested Citation

  • Zheren Zhang & Yingjie Tang & Zheng Xu, 2021. "Miniaturization of an Offshore Platform with Medium-Frequency Offshore Wind Farm and MMC-HVDC Technology," Energies, MDPI, vol. 14(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2058-:d:532119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emir Omerdic & Jakub Osmic & Cathal O’Donnell & Edin Omerdic, 2021. "Control Algorithm for Parallel Connected Offshore Wind Turbine Generators," Energies, MDPI, vol. 14(15), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Yongqing & Yan, Shuhao & Wu, Kang & Ning, Lianhui & Li, Xuan & Wang, Xiuli & Wang, Xifan, 2021. "Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 1955-1968.
    2. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    3. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    4. Leszek Resner & Sandra Paszkiewicz, 2021. "Radial Water Barrier in Submarine Cables, Current Solutions and Innovative Development Directions," Energies, MDPI, vol. 14(10), pages 1-20, May.
    5. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    6. Byeonghyeon An & Junsoo Che & Taehun Kim & Taesik Park, 2024. "Selection of an Optimal Frequency for Offshore Wind Farms," Energies, MDPI, vol. 17(10), pages 1-20, May.
    7. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
    8. Bowen Zhou & Zhibo Zhang & Guangdi Li & Dongsheng Yang & Matilde Santos, 2023. "Review of Key Technologies for Offshore Floating Wind Power Generation," Energies, MDPI, vol. 16(2), pages 1-26, January.
    9. De-Prada-Gil, Mikel & Díaz-González, Francisco & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2015. "DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment," Energy, Elsevier, vol. 86(C), pages 311-322.
    10. Rogeau, Antoine & Vieubled, Julien & de Coatpont, Matthieu & Affonso Nobrega, Pedro & Erbs, Guillaume & Girard, Robin, 2023. "Techno-economic evaluation and resource assessment of hydrogen production through offshore wind farms: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2058-:d:532119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.