IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1739-d521342.html
   My bibliography  Save this article

Measurement of Static Frequency Characteristics of Home Appliances in Smart Grid Systems

Author

Listed:
  • Anton Beláň

    (Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 81 219 Bratislava, Slovakia)

  • Boris Cintula

    (Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 81 219 Bratislava, Slovakia)

  • Matej Cenký

    (Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 81 219 Bratislava, Slovakia)

  • Peter Janiga

    (Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 81 219 Bratislava, Slovakia)

  • Jozef Bendík

    (Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 81 219 Bratislava, Slovakia)

  • Žaneta Eleschová

    (Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 81 219 Bratislava, Slovakia)

  • Adam Šimurka

    (Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 81 219 Bratislava, Slovakia)

Abstract

The current transformation of power systems is aiming towards distributed source integration and general decentralization. Renewable energy sources and support of local energy supply create conditions for widespread use of new technologies and smart grids. As the electrical grids become more electrically independent, the importance of frequency control will rise. Stability of the system in such cases is no longer only relying on rotating inertia of generators as in the centralized grid. This known scenario has already been analyzed by many with computational models for optimal safety precautions of the grid. This paper aims to update the common home appliance frequency characteristics through measurements and compare them to those currently used. These devices were divided into two groups: general categorization and light sources. Subsequently, the frequency sensitivity coefficients were evaluated and analyzed home appliances were sorted into three categories according to the size of their frequency sensitivity coefficient values: positive, negative, and no effect. The results were compared with studies aimed at evaluating the static load characteristics. A simplified simulation of the frequency control, presented in the discussion section, was carried out to determine the consequences of the newly measured characteristics and concludes the paper.

Suggested Citation

  • Anton Beláň & Boris Cintula & Matej Cenký & Peter Janiga & Jozef Bendík & Žaneta Eleschová & Adam Šimurka, 2021. "Measurement of Static Frequency Characteristics of Home Appliances in Smart Grid Systems," Energies, MDPI, vol. 14(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1739-:d:521342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josh Davidson & John V. Ringwood, 2017. "Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review," Energies, MDPI, vol. 10(5), pages 1-46, May.
    2. Muhammad Saeed Uz Zaman & Muhammad Irfan & Muhammad Ahmad & Manuel Mazzara & Chul-Hwan Kim, 2020. "Modeling the Impact of Modified Inertia Coefficient (H) due to ESS in Power System Frequency Response Analysis," Energies, MDPI, vol. 13(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Zilin Wang & Yanru Chen & Min Guo & Zhengyu Chen & Yi Niu & Huangeng Liu & Liangyin Chen, 2021. "Bats: An Appliance Safety Hazards Factors Detection Algorithm with an Improved Nonintrusive Load Disaggregation Method," Energies, MDPI, vol. 14(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    2. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.
    4. Matthew Leary & Curtis Rusch & Zhe Zhang & Bryson Robertson, 2021. "Comparison and Validation of Hydrodynamic Theories for Wave Energy Converter Modelling," Energies, MDPI, vol. 14(13), pages 1-18, July.
    5. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    6. Glavind, Sebastian T. & Sepulveda, Juan G. & Faber, Michael H., 2022. "On a simple scheme for systems modeling and identification using big data techniques," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    8. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    9. Oikonomou, C.L.G. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O., 2020. "On the dynamics of an array of spar-buoy oscillating water column devices with inter-body mooring connections," Renewable Energy, Elsevier, vol. 148(C), pages 309-325.
    10. Luca Martinelli & Barbara Zanuttigh, 2018. "Effects of Mooring Compliancy on the Mooring Forces, Power Production, and Dynamics of a Floating Wave Activated Body Energy Converter," Energies, MDPI, vol. 11(12), pages 1-24, December.
    11. Nahid-Al Masood & Md. Nahid Haque Shazon & Hasin Mussayab Ahmed & Shohana Rahman Deeba, 2020. "Mitigation of Over-Frequency through Optimal Allocation of BESS in a Low-Inertia Power System," Energies, MDPI, vol. 13(17), pages 1-23, September.
    12. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    13. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    14. Eirini Katsidoniotaki & Foivos Psarommatis & Malin Göteman, 2022. "Digital Twin for the Prediction of Extreme Loads on a Wave Energy Conversion System," Energies, MDPI, vol. 15(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1739-:d:521342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.