IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp655-669.html
   My bibliography  Save this article

A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models

Author

Listed:
  • Penalba, Markel
  • Davidson, Josh
  • Windt, Christian
  • Ringwood, John V.

Abstract

Performing rigorous technical and commercial assessment of wave energy converters (WECs) numerically, before engaging in expensive wave tank and open ocean tests, is vital for the economically successful development of prototypes. To that end, this paper presents a high-fidelity wave-to-wire simulation platform (the HiFiWEC), where a Computational Fluid Dynamics (CFD)-based numerical wave tank is coupled to a high-fidelity power take-off (PTO) model, which enables assessment of WEC performance with greater accuracy than with previous wave-to-wire approaches. A test case, simulating the performance of a heaving point absorber type WEC in realistic conditions, is presented and compared against traditional lower fidelity modelling methods. The WEC response is evaluated with a number of different approaches, including different techniques to model hydrodynamic wave-structure interactions and the power take-off system, and the benefits of the HiFiWEC are highlighted. The results highlight that excessive simplifications in the modelling of the PTO system can lead to significant overestimation in generated energy output, with relative deviations (∊) of up to 150% compared to the HiFiWEC. In addition, uncertainty in viscous drag parameters added to hydrodynamic models based on boundary element method solvers, reinforce the necessity of CFD-based models for applications where high-fidelity is essential. Finally, it is demonstrated that minor/insignificant inaccuracies in the hydrodynamic model (∊=0.5%) can result in significant differences in the estimation of the final energy generation (∊=7%), highlighting the need for a coupled high-fidelity platform.

Suggested Citation

  • Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:655-669
    DOI: 10.1016/j.apenergy.2018.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonas Sjolte & Christian McLisky Sandvik & Elisabetta Tedeschi & Marta Molinas, 2013. "Exploring the Potential for Increased Production from the Wave Energy Converter Lifesaver by Reactive Control," Energies, MDPI, vol. 6(8), pages 1-28, July.
    2. Markel Penalba & Nathan P. Sell & Andy J. Hillis & John V. Ringwood, 2017. "Validating a Wave-to-Wire Model for a Wave Energy Converter—Part I: The Hydraulic Transmission System," Energies, MDPI, vol. 10(7), pages 1-22, July.
    3. O'Sullivan, Adrian C.M. & Lightbody, Gordon, 2017. "Co-design of a wave energy converter using constrained predictive control," Renewable Energy, Elsevier, vol. 102(PA), pages 142-156.
    4. Markel Penalba & José-Antonio Cortajarena & John V. Ringwood, 2017. "Validating a Wave-to-Wire Model for a Wave Energy Converter—Part II: The Electrical System," Energies, MDPI, vol. 10(7), pages 1-24, July.
    5. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    6. Ransley, E.J. & Greaves, D. & Raby, A. & Simmonds, D. & Hann, M., 2017. "Survivability of wave energy converters using CFD," Renewable Energy, Elsevier, vol. 109(C), pages 235-247.
    7. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    8. Rico H. Hansen & Morten M. Kramer & Enrique Vidal, 2013. "Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-44, August.
    9. Ransley, E.J. & Greaves, D.M. & Raby, A. & Simmonds, D. & Jakobsen, M.M. & Kramer, M., 2017. "RANS-VOF modelling of the Wavestar point absorber," Renewable Energy, Elsevier, vol. 109(C), pages 49-65.
    10. Henriques, J.C.C. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Ceballos, S., 2016. "Testing and control of a power take-off system for an oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 714-724.
    11. Josh Davidson & John V. Ringwood, 2017. "Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review," Energies, MDPI, vol. 10(5), pages 1-46, May.
    12. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    13. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    14. Scott Beatty & Francesco Ferri & Bryce Bocking & Jens Peter Kofoed & Bradley Buckham, 2017. "Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters," Energies, MDPI, vol. 10(7), pages 1-22, July.
    15. Cargo, C.J. & Hillis, A.J. & Plummer, A.R., 2016. "Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms," Renewable Energy, Elsevier, vol. 94(C), pages 32-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    2. Liu, Changhai & Hu, Min & Gao, Wenzhi & Chen, Jian & Zeng, Yishan & Wei, Daozhu & Yang, Qingjun & Bao, Gang, 2021. "A high-precise model for the hydraulic power take-off of a raft-type wave energy converter," Energy, Elsevier, vol. 215(PA).
    3. Windt, Christian & Davidson, Josh & Ransley, Edward J. & Greaves, Deborah & Jakobsen, Morten & Kramer, Morten & Ringwood, John V., 2020. "Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter," Renewable Energy, Elsevier, vol. 146(C), pages 2499-2516.
    4. Alain Ulazia & Markel Penalba & Arkaitz Rabanal & Gabriel Ibarra-Berastegi & John Ringwood & Jon Sáenz, 2018. "Historical Evolution of the Wave Resource and Energy Production off the Chilean Coast over the 20th Century," Energies, MDPI, vol. 11(9), pages 1-23, August.
    5. Ulazia, Alain & Penalba, Markel & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2019. "Reduction of the capture width of wave energy converters due to long-term seasonal wave energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Zulkifli Mohd Yusop & Aliashim Albani, 2020. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches," Energies, MDPI, vol. 14(1), pages 1-26, December.
    7. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    8. Giorgi, Giuseppe & Gomes, Rui P.F. & Henriques, João C.C. & Gato, Luís M.C. & Bracco, Giovanni & Mattiazzo, Giuliana, 2020. "Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests," Applied Energy, Elsevier, vol. 276(C).
    9. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    10. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    11. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    12. Philip Balitsky & Nicolas Quartier & Gael Verao Fernandez & Vasiliki Stratigaki & Peter Troch, 2018. "Analyzing the Near-Field Effects and the Power Production of an Array of Heaving Cylindrical WECs and OSWECs Using a Coupled Hydrodynamic-PTO Model," Energies, MDPI, vol. 11(12), pages 1-32, December.
    13. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    14. Zhong, Qian & Yeung, Ronald W., 2019. "Wave-body interactions among energy absorbers in a wave farm," Applied Energy, Elsevier, vol. 233, pages 1051-1064.
    15. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    16. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Shao, Zhuxiao & Gao, Huijun & Liang, Bingchen & Lee, Dongyoung, 2022. "Potential, trend and economic assessments of global wave power," Renewable Energy, Elsevier, vol. 195(C), pages 1087-1102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Penalba, Markel & Ringwood, John V., 2019. "A high-fidelity wave-to-wire model for wave energy converters," Renewable Energy, Elsevier, vol. 134(C), pages 367-378.
    2. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    3. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    4. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    5. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    6. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    7. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    8. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    9. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    10. Yubo Niu & Xingyuan Gu & Xuhui Yue & Yang Zheng & Peijie He & Qijuan Chen, 2022. "Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-15, February.
    11. Gao, Hong & Xiao, Jie, 2021. "Effects of power take-off parameters and harvester shape on wave energy extraction and output of a hydraulic conversion system," Applied Energy, Elsevier, vol. 299(C).
    12. De Koker, Kristof L. & Crevecoeur, Guillaume & Meersman, Bart & Vantorre, Marc & Vandevelde, Lieven, 2017. "A wave emulator for ocean wave energy, a Froude-scaled dry power take-off test setup," Renewable Energy, Elsevier, vol. 105(C), pages 712-721.
    13. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    14. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    15. Markel Penalba & José-Antonio Cortajarena & John V. Ringwood, 2017. "Validating a Wave-to-Wire Model for a Wave Energy Converter—Part II: The Electrical System," Energies, MDPI, vol. 10(7), pages 1-24, July.
    16. Markel Penalba & Nathan P. Sell & Andy J. Hillis & John V. Ringwood, 2017. "Validating a Wave-to-Wire Model for a Wave Energy Converter—Part I: The Hydraulic Transmission System," Energies, MDPI, vol. 10(7), pages 1-22, July.
    17. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    19. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    20. Henriques, J.C.C. & Portillo, J.C.C. & Sheng, W. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 571-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:655-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.