IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002113.html
   My bibliography  Save this article

Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive

Author

Listed:
  • Gao, Hong
  • Xiao, Jie
  • Liang, Ruizhi

Abstract

Wave energy is a promising renewable energy source. How to improve wave energy capture efficiency is a key challenge of wave energy generation. A multi-dimensional wave energy converter (MDWEC) with a strong coupling parallel drive is proposed. The MDWEC can efficiently absorb wave energy through a multi-dimensional moving body driven by six parallel hydraulic cylinders. Based on the Lagrangian approach, high nonlinear strong coupling dynamic models of the MDWEC are established. The hydraulic cylinder force acting on the converter is deduced according to the principle of virtual work. The nonlinear hydrostatic restoring force for different submerged body geometry shapes is derived. The vertical restoring force caused by pitch and roll, the pitch and roll restoring torque caused by deviating from the equilibrium position, the coupled radiation force, and the coupled inertial force between pitch and surge are considered. The hydrodynamic performance, the motion response, and the transient power behavior are investigated. The upper and lower platform hinge point radius, the hinge point center angle, and conversion parameters are optimized based on a genetic algorithm. Wave power capture ability comparison with different design parameters, shapes, and wave states is presented. As the significant wave height decreases from 3 m to 1 m, the capture efficiency increases from 68.3% to 79.1%. The capture ability of MDWEC with semiellipsolid is the highest. Compared with a heaving cone converter, the MDWEC improves the capture efficiency by 47.5% with a significant wave height of 1 m and an energy period of 4 s.

Suggested Citation

  • Gao, Hong & Xiao, Jie & Liang, Ruizhi, 2024. "Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002113
    DOI: 10.1016/j.apenergy.2024.122828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.