IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309338.html
   My bibliography  Save this article

Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests

Author

Listed:
  • Giorgi, Giuseppe
  • Gomes, Rui P.F.
  • Henriques, João C.C.
  • Gato, Luís M.C.
  • Bracco, Giovanni
  • Mattiazzo, Giuliana

Abstract

The wave energy sector has faced enormous technological improvements over the last five decades, however, due to the complexity of the hydrodynamic processes, current numerical models still have limitations in predicting relevant phenomena. In particular, floating spar-type wave energy converters are prone to large undesirable roll and pitch amplitudes caused by a dynamic instability induced by parametric resonance. Detecting this phenomenon accurately is essential as it impacts drastically on power extraction, structural loads and mooring forces. This paper presents the validation of results from a numerical model, capable of detecting parametric resonance, using experimental data. Experiments were carried out for a scaled model of the Spar-buoy OWC (Oscillating Water Column) device at a large ocean basin. The buoy uses a slack-mooring system attached to the basin floor. The scaled turbine damping effect is simulated by a calibrated orifice plate. Two different buoy draft configurations are considered to analyse the effect of different mass distributions. The numerical model considers the nonlinear Froude-Krylov forces, which allows it to capture complex hydrodynamic phenomena associated with the six-degree-of-freedom motion of the buoy. The mooring system is simulated through a quasi-static inelastic line model. Real fluid effects are accounted for through drag forces based on the Morison’s equation and determined from experimental data. The comparison of results from regular-wave tests shows good agreement, including when parametric resonance is detected. Numerical results show that parametric resonance can produce a negative impact on power extraction efficiency up to 53%.

Suggested Citation

  • Giorgi, Giuseppe & Gomes, Rui P.F. & Henriques, João C.C. & Gato, Luís M.C. & Bracco, Giovanni & Mattiazzo, Giuliana, 2020. "Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309338
    DOI: 10.1016/j.apenergy.2020.115421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Wave power extraction of a heaving floating oscillating water column in a wave channel," Renewable Energy, Elsevier, vol. 99(C), pages 1262-1275.
    2. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    3. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
    4. Correia da Fonseca, F.X. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces," Energy, Elsevier, vol. 112(C), pages 1207-1218.
    5. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    6. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    7. Simonetti, I. & Cappietti, L. & Oumeraci, H., 2018. "An empirical model as a supporting tool to optimize the main design parameters of a stationary oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 231(C), pages 1205-1215.
    8. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    9. Robertson, Bryson & Bekker, Jessica & Buckham, Bradley, 2020. "Renewable integration for remote communities: Comparative allowable cost analyses for hydro, solar and wave energy," Applied Energy, Elsevier, vol. 264(C).
    10. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    11. Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.
    12. Falcão, António F.O. & Henriques, João C.C., 2019. "The spring-like air compressibility effect in oscillating-water-column wave energy converters: Review and analyses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 483-498.
    13. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion," Renewable Energy, Elsevier, vol. 44(C), pages 328-339.
    14. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2020. "Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests," Renewable Energy, Elsevier, vol. 149(C), pages 165-180.
    15. Falcão, António F.O. & Henriques, João C.C. & Cândido, José J., 2012. "Dynamics and optimization of the OWC spar buoy wave energy converter," Renewable Energy, Elsevier, vol. 48(C), pages 369-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    2. Erfan Amini & Rojin Asadi & Danial Golbaz & Mahdieh Nasiri & Seyed Taghi Omid Naeeni & Meysam Majidi Nezhad & Giuseppe Piras & Mehdi Neshat, 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    3. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    4. Seyed Milad Mousavi & Majid Ghasemi & Mahsa Dehghan Manshadi & Amir Mosavi, 2021. "Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory," Mathematics, MDPI, vol. 9(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    2. Portillo, J.C.C. & Collins, K.M. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Howey, B.D. & Hann, M.R. & Greaves, D.M. & Falcão, A.F.O., 2020. "Wave energy converter physical model design and testing: The case of floating oscillating-water-columns," Applied Energy, Elsevier, vol. 278(C).
    3. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2020. "Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests," Renewable Energy, Elsevier, vol. 149(C), pages 165-180.
    5. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    6. Gradowski, M. & Gomes, R.P.F. & Alves, M., 2020. "Hydrodynamic optimisation of an axisymmetric floating Oscillating Water Column type wave energy converter with an enlarged inner tube," Renewable Energy, Elsevier, vol. 162(C), pages 1519-1532.
    7. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    8. Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).
    9. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    10. Minghao Wu & Vasiliki Stratigaki & Peter Troch & Corrado Altomare & Tim Verbrugghe & Alejandro Crespo & Lorenzo Cappietti & Matthew Hall & Moncho Gómez-Gesteira, 2019. "Experimental Study of a Moored Floating Oscillating Water Column Wave-Energy Converter and of a Moored Cubic Box," Energies, MDPI, vol. 12(10), pages 1-20, May.
    11. Dongsheng Qiao & Rizwan Haider & Jun Yan & Dezhi Ning & Binbin Li, 2020. "Review of Wave Energy Converter and Design of Mooring System," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    12. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    13. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
    14. Oikonomou, C.L.G. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O., 2020. "On the dynamics of an array of spar-buoy oscillating water column devices with inter-body mooring connections," Renewable Energy, Elsevier, vol. 148(C), pages 309-325.
    15. Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
    16. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Maximising the hydrodynamic performance of offshore oscillating water column wave energy converters," Applied Energy, Elsevier, vol. 308(C).
    17. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Simonetti, I. & Cappietti, L. & Oumeraci, H., 2018. "An empirical model as a supporting tool to optimize the main design parameters of a stationary oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 231(C), pages 1205-1215.
    19. Wang, Anqun & Chen, Jun & Wang, Li & Han, Junlei & Su, Weiguang & Li, Anqing & Liu, Pengbo & Duan, Liya & Xu, Chonghai & Zeng, Zheng, 2022. "Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator," Applied Energy, Elsevier, vol. 307(C).
    20. Roh Chan & Kil-Won Kim & Ji-Yong Park & Se-Wan Park & Kyong-Hwan Kim & Sang-Shin Kwak, 2020. "Power Performance Analysis According to the Configuration and Load Control Algorithm of Power Take-Off System for Oscillating Water Column Type Wave Energy Converters," Energies, MDPI, vol. 13(23), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.