IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009923.html
   My bibliography  Save this article

Shared mooring system designs and cost estimates for wave energy arrays

Author

Listed:
  • Housner, Stein
  • Hall, Matthew
  • Tran, Thanh Toan
  • de Miguel Para, Borja
  • Maeso, Aimar

Abstract

For floating renewable energy devices to become more cost-efficient and commercially scalable, their mooring system designs must be low-cost and suited for large-scale installations. Large arrays of floating devices, such as wave energy converters (WECs), will likely be designed with an individual mooring system for each device in the array. However, new mooring technology advancements provide options to use shared mooring lines to connect adjacent devices to one another, reducing the total number of anchors in the array, thereby reducing material use and cost. This paper explores the design, modeling, and cost analysis of shared mooring systems for various sizes of arrays consisting of heaving oscillating water column (OWC) WECs. Shared mooring systems for WEC arrays sized in 2×N and N×N grid layouts are designed to meet the relevant design standards, checking their performance with a nonlinear time-domain dynamic simulation, and the costs of each are calculated and compared. Several assumptions are taken in the design process to produce efficient results, providing a preliminary optimization for guidance on design decisions rather than a full, detailed design analysis. Mooring system costs per WEC were found to decrease as the number of WECs in the array increase, up to certain array sizes. The 2 × 3 array had the lowest mooring system cost per WEC out of all arrays considered, with a 60% cost reduction relative to using individual mooring systems. The 3 × 3 and 4 × 4 arrays achieved a 50% cost per WEC reduction. In addition to these significant cost reductions, the shared mooring system designs can provide advantages through smaller mooring system footprints, lower installation times, and less seabed disturbance.

Suggested Citation

  • Housner, Stein & Hall, Matthew & Tran, Thanh Toan & de Miguel Para, Borja & Maeso, Aimar, 2024. "Shared mooring system designs and cost estimates for wave energy arrays," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009923
    DOI: 10.1016/j.renene.2024.120924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    2. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    3. Weller, S.D. & Johanning, L. & Davies, P. & Banfield, S.J., 2015. "Synthetic mooring ropes for marine renewable energy applications," Renewable Energy, Elsevier, vol. 83(C), pages 1268-1278.
    4. Pau Mercadé Ruiz & Vincenzo Nava & Mathew B. R. Topper & Pablo Ruiz Minguela & Francesco Ferri & Jens Peter Kofoed, 2017. "Layout Optimisation of Wave Energy Converter Arrays," Energies, MDPI, vol. 10(9), pages 1-17, August.
    5. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    6. Josh Davidson & John V. Ringwood, 2017. "Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review," Energies, MDPI, vol. 10(5), pages 1-46, May.
    7. Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    2. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    3. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    4. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    5. Li, Demin & Sharma, Sanjay & Borthwick, Alistair G.L. & Huang, Heao & Dong, Xiaochen & Li, Yanni & Shi, Hongda, 2023. "Experimental study of a floating two-body wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    6. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    7. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Dongsheng Qiao & Rizwan Haider & Jun Yan & Dezhi Ning & Binbin Li, 2020. "Review of Wave Energy Converter and Design of Mooring System," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    9. Luca Martinelli & Barbara Zanuttigh, 2018. "Effects of Mooring Compliancy on the Mooring Forces, Power Production, and Dynamics of a Floating Wave Activated Body Energy Converter," Energies, MDPI, vol. 11(12), pages 1-24, December.
    10. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    11. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    12. Bao, Minghan & Arzaghi, Ehsan & Abaei, Mohammad Mahdi & Abbassi, Rouzbeh & Garaniya, Vikram & Abdussamie, Nagi & Heasman, Kevin, 2024. "Site selection for offshore renewable energy platforms: A multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 229(C).
    13. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    14. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Dengshuai Wang & Zhenquan Zhang & Yunpeng Hai & Yanjun Liu & Gang Xue, 2023. "Design and Control of Hydraulic Power Take-Off System for an Array of Point Absorber Wave Energy Converters," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    16. Yingjie Cui & Fei Zhang & Zhongxian Chen, 2023. "Predication of Ocean Wave Height for Ocean Wave Energy Conversion System," Energies, MDPI, vol. 16(9), pages 1-13, April.
    17. Oikonomou, C.L.G. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O., 2020. "On the dynamics of an array of spar-buoy oscillating water column devices with inter-body mooring connections," Renewable Energy, Elsevier, vol. 148(C), pages 309-325.
    18. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    19. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    20. Seyed Abolfazl Mortazavizadeh & Reza Yazdanpanah & David Campos Gaona & Olimpo Anaya-Lara, 2023. "Fault Diagnosis and Condition Monitoring in Wave Energy Converters: A Review," Energies, MDPI, vol. 16(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.