IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1449-d512088.html
   My bibliography  Save this article

Study on Optimum Power Take-Off Torque of an Asymmetric Wave Energy Converter in Western Sea of Jeju Island

Author

Listed:
  • Haeng Sik Ko

    (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea)

  • Sangho Kim

    (Green-Ship Research Division, Research Institute of Medium & Small Shipbuilding (RIMS), Busan 46757, Korea)

  • Yoon Hyeok Bae

    (Department of Ocean System Engineering, Jeju National University, Jeju 63243, Korea)

Abstract

This study primarily investigates an optimum energy conversion efficiency of asymmetric wave energy converter (WEC). A power take-off (PTO) system that provides a constant load torque opposite to pitch motion was implemented. Incident wave conditions were selected based on the measured data in the western sea of Jeju Island, South Korea. An optimum torque was calculated by comparing the time-averaged extracted power with various PTO load torque. InterDyMFoam solver based on Reynolds-averaged Navier-Stokes (RANS) equations were used in an OpenFOAM v4.0 framework—an open-source computational fluid dynamics model—against the experimental results derived from the wave flume. The upward pitch excursion was induced by wave force due to the asymmetric WEC characteristics; however, the downward pitch excursion depends on its weight. Numerically, the PTO torque was only loaded in uni-direction against the upward pitch motion. Moreover, the optimum PTO torque was estimated by comparing the time-averaged extracted power. Finally, the optimum PTO torque was evaluated by an irregular wave as a function of significant wave height. The optimum PTO provides design information about the asymmetric wave energy converter to improve energy conversion efficiency.

Suggested Citation

  • Haeng Sik Ko & Sangho Kim & Yoon Hyeok Bae, 2021. "Study on Optimum Power Take-Off Torque of an Asymmetric Wave Energy Converter in Western Sea of Jeju Island," Energies, MDPI, vol. 14(5), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1449-:d:512088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Göteman, Malin, 2018. "Real-time latching control strategies for the solo Duck wave energy converter in irregular waves," Applied Energy, Elsevier, vol. 222(C), pages 717-728.
    2. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part I: Optimal and control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 922-934.
    3. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part II: Development of latching control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 935-944.
    4. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    2. Sunny Kumar Poguluri & Dongeun Kim & Yoon Hyeok Bae, 2024. "A Numerical Investigation of the Hydrodynamic Performance of a Pitch-Type Wave Energy Converter Using Weakly and Fully Nonlinear Models," Energies, MDPI, vol. 17(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    2. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Shadman, Milad & Guarniz Avalos, Gustavo Omar & Estefen, Segen F., 2021. "On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching," Renewable Energy, Elsevier, vol. 169(C), pages 157-177.
    4. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    5. Sheng, Wanan, 2019. "Wave energy conversion and hydrodynamics modelling technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 482-498.
    6. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    7. Haraguchi, Ruriko & Asai, Takehiko, 2020. "Enhanced power absorption of a point absorber wave energy converter using a tuned inertial mass," Energy, Elsevier, vol. 202(C).
    8. Zhang, Zhenquan & Qin, Jian & Wang, Dengshuai & Wang, Wei & Liu, Yanjun & Xue, Gang, 2023. "Research on wave excitation estimators for arrays of wave energy converters," Energy, Elsevier, vol. 264(C).
    9. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    10. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    11. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    12. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    13. Li, Wenlong & Chau, K.T. & Lee, Christopher H.T. & Ching, T.W. & Chen, Mu & Jiang, J.Z., 2017. "A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction," Renewable Energy, Elsevier, vol. 105(C), pages 199-208.
    14. Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.
    15. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.
    16. Tri, Nguyen Minh & Truong, Dinh Quang & Thinh, Do Hoang & Binh, Phan Cong & Dung, Dang Tri & Lee, Seyoung & Park, Hyung Gyu & Ahn, Kyoung Kwan, 2016. "A novel control method to maximize the energy-harvesting capability of an adjustable slope angle wave energy converter," Renewable Energy, Elsevier, vol. 97(C), pages 518-531.
    17. Temiz, Irina & Leijon, Jennifer & Ekergård, Boel & Boström, Cecilia, 2018. "Economic aspects of latching control for a wave energy converter with a direct drive linear generator power take-off," Renewable Energy, Elsevier, vol. 128(PA), pages 57-67.
    18. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    19. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    20. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1449-:d:512088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.