IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p257-d475275.html
   My bibliography  Save this article

Home Energy Management System Embedded with a Multi-Objective Demand Response Optimization Model to Benefit Customers and Operators

Author

Listed:
  • Aya Amer

    (Electrical Engineering Department, Qatar University, Doha 2713, Qatar)

  • Khaled Shaban

    (Computer Science and Engineering Department, Qatar University, Doha 2713, Qatar)

  • Ahmed Gaouda

    (Computer Science and Engineering Department, Qatar University, Doha 2713, Qatar)

  • Ahmed Massoud

    (Electrical Engineering Department, Qatar University, Doha 2713, Qatar)

Abstract

This paper proposes a Home Energy Management System (HEMS) that optimizes the load demand and distributed energy resources. The optimal demand/generation profile is presented while considering utility price signal, customer satisfaction, and distribution transformer condition. The electricity home demand considers electric vehicles (EVs), Battery Energy Storage Systems (BESSs), and all types of non-shiftable, shiftable, and controllable appliances. Furthermore, PV-based renewable energy resources, EVs, and BESSs are utilized as sources of generated power during specific time intervals. In this model, customers can only perform Demand Response (DR) actions with contracts with utility operators. A multi-objective demand/generation response is proposed to optimize the scheduling of various loads/supplies based on the pricing schemes. The customers’ behavior comfort level and a degradation cost that reflects the distribution transformer Loss-of-Life (LoL) are integrated into the multi-objective optimization problem. Simulation results demonstrate the mutual benefits that the proposed HEMS provides to customers and utility operators by minimizing electricity costs while meeting customer comfort needs and minimizing transformer LoL to enhance operators’ assets. The results show that the electricity operation cost and demand peak are reduced by 31% and 18%, respectively, along with transformer LoL % which is reduced by 28% compared with the case when no DR was applied.

Suggested Citation

  • Aya Amer & Khaled Shaban & Ahmed Gaouda & Ahmed Massoud, 2021. "Home Energy Management System Embedded with a Multi-Objective Demand Response Optimization Model to Benefit Customers and Operators," Energies, MDPI, vol. 14(2), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:257-:d:475275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yeongenn Kwon & Taeyoung Kim & Keon Baek & Jinho Kim, 2020. "Multi-Objective Optimization of Home Appliances and Electric Vehicle Considering Customer’s Benefits and Offsite Shared Photovoltaic Curtailment," Energies, MDPI, vol. 13(11), pages 1-16, June.
    2. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, vol. 8(10), pages 1-40, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Aillane & Karim Dahech & Larbi Chrifi-Alaoui & Aissa Chouder & Tarak Damak & Abdelhak Hadjkaddour & Pascal Bussy, 2023. "The Design and Processor-In-The-Loop Implementation of a Super-Twisting Control Algorithm Based on a Luenberger Observer for a Seamless Transition between Grid-Connected and Stand-Alone Modes in Micro," Energies, MDPI, vol. 16(9), pages 1-22, May.
    2. Mohammed Ali Khan & Ahteshamul Haque & Frede Blaabjerg & Varaha Satya Bharath Kurukuru & Huai Wang, 2021. "Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    3. Álvaro Gutiérrez, 2022. "Optimization Trends in Demand-Side Management," Energies, MDPI, vol. 15(16), pages 1-3, August.
    4. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2021. "Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation," Energies, MDPI, vol. 14(19), pages 1-22, September.
    5. Aya Amer & Khaled Shaban & Ahmed Massoud, 2022. "Demand Response in HEMSs Using DRL and the Impact of Its Various Configurations and Environmental Changes," Energies, MDPI, vol. 15(21), pages 1-20, November.
    6. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    7. Emad M. Ahmed & Rajarajeswari Rathinam & Suchitra Dayalan & George S. Fernandez & Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar, 2021. "A Comprehensive Analysis of Demand Response Pricing Strategies in a Smart Grid Environment Using Particle Swarm Optimization and the Strawberry Optimization Algorithm," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    8. Nedim Tutkun & Luigi Scarcello & Carlo Mastroianni, 2023. "Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems," Sustainability, MDPI, vol. 15(11), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miro Antonijević & Stjepan Sučić & Hrvoje Keserica, 2018. "Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication," Energies, MDPI, vol. 11(3), pages 1-17, March.
    2. Álvaro Jaramillo-Duque & Nicolás Muñoz-Galeano & José R. Ortiz-Castrillón & Jesús M. López-Lezama & Ricardo Albarracín-Sánchez, 2018. "Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance," Energies, MDPI, vol. 11(2), pages 1-12, February.
    3. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    4. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    5. Aya Amer & Khaled Shaban & Ahmed Massoud, 2022. "Demand Response in HEMSs Using DRL and the Impact of Its Various Configurations and Environmental Changes," Energies, MDPI, vol. 15(21), pages 1-20, November.
    6. Dante Ruiz-Robles & Vicente Venegas-Rebollar & Adolfo Anaya-Ruiz & Edgar L. Moreno-Goytia & Juan R. Rodríguez-Rodríguez, 2018. "Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC–DC Converters," Energies, MDPI, vol. 11(8), pages 1-17, August.
    7. Alvaro Carreno & Marcelo Perez & Carlos Baier & Alex Huang & Sanjay Rajendran & Mariusz Malinowski, 2021. "Configurations, Power Topologies and Applications of Hybrid Distribution Transformers," Energies, MDPI, vol. 14(5), pages 1-35, February.
    8. Xiaowen Wu & Ling Li & Nianguang Zhou & Ling Lu & Sheng Hu & Hao Cao & Zhiqiang He, 2018. "Diagnosis of DC Bias in Power Transformers Using Vibration Feature Extraction and a Pattern Recognition Method," Energies, MDPI, vol. 11(7), pages 1-20, July.
    9. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    10. Gang Liu & Zhi Zheng & Dongwei Yuan & Lin Li & Weige Wu, 2018. "Simulation of Fluid-Thermal Field in Oil-Immersed Transformer Winding Based on Dimensionless Least-Squares and Upwind Finite Element Method," Energies, MDPI, vol. 11(9), pages 1-17, September.
    11. Héricles Eduardo Oliveira Farias & Camilo Alberto Sepulveda Rangel & Leonardo Weber Stringini & Luciane Neves Canha & Daniel Pegoraro Bertineti & Wagner da Silva Brignol & Zeno Iensen Nadal, 2021. "Combined Framework with Heuristic Programming and Rule-Based Strategies for Scheduling and Real Time Operation in Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(5), pages 1-27, March.
    12. Xiang Gao & C. Adam Schlosser & Eric R. Morgan, 2018. "Potential impacts of climate warming and increased summer heat stress on the electric grid: a case study for a large power transformer (LPT) in the Northeast United States," Climatic Change, Springer, vol. 147(1), pages 107-118, March.
    13. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    14. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    15. Jun Jiang & Mingxin Zhao & Chaohai Zhang & Min Chen & Haojun Liu & Ricardo Albarracín, 2018. "Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer," Energies, MDPI, vol. 11(8), pages 1-13, August.
    16. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    17. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
    18. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    19. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    20. Tingting Hou & Rengcun Fang & Jinrui Tang & Ganheng Ge & Dongjun Yang & Jianchao Liu & Wei Zhang, 2021. "A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms," Energies, MDPI, vol. 14(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:257-:d:475275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.