IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3979-d587438.html
   My bibliography  Save this article

Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems

Author

Listed:
  • Mohammed Ali Khan

    (Advance Power Electronics Research Laboratory, Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia (Central University), New Delhi 110025, India)

  • Ahteshamul Haque

    (Advance Power Electronics Research Laboratory, Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia (Central University), New Delhi 110025, India)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Varaha Satya Bharath Kurukuru

    (Advance Power Electronics Research Laboratory, Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia (Central University), New Delhi 110025, India)

  • Huai Wang

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

This paper proposes an intelligent seamless transition controller for smooth transition between grid-connected (GC) and standalone modes of distributed generation (DG) units in the grid. The development of this seamless controller contributes to two main processes in the transition modes: the synchronization process and an islanding process. For the synchronization process, the stationary reference frame phase-locked loop (SRF-PLL) associated with the voltage source inverter (VSI) is modified using the frequency, voltage deviation, and phase angle information. Furthermore, the islanding process is classified as intentional and unintentional islanding scenarios for achieving efficient transition control. Here, the intentional islanding process is achieved with the information that is available in the system due to the planned disconnection. For the unintentional islanding process, a fuzzy inference system (FIS) is used to modify the conventional droop control using the information of change in active power, voltage, and frequency. To identify the action of the proposed approach during the transition process, numerical simulations are conducted with the hardware-in-loop (HIL) simulator by developing a 10 kWp three-phase grid-connected DG system. The results identified the efficient control of the VSI for both islanding and grid connection processes. In the islanding conditions, the proposed controller provides advantage with less detection and disconnection time, and during synchronization, it instantly minimizes the phase-angle deviation to achieve efficient control.

Suggested Citation

  • Mohammed Ali Khan & Ahteshamul Haque & Frede Blaabjerg & Varaha Satya Bharath Kurukuru & Huai Wang, 2021. "Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3979-:d:587438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Shi & Guanglei Zhou & Peifeng Xu & Haihan Ye & Fei Tan, 2018. "The Integrated Switching Control Strategy for Grid-Connected and Islanding Operation of Micro-Grid Inverters Based on a Virtual Synchronous Generator," Energies, MDPI, vol. 11(6), pages 1-20, June.
    2. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    3. Sk Abdul Aleem & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "A Review of Strategies to Increase PV Penetration Level in Smart Grids," Energies, MDPI, vol. 13(3), pages 1-28, February.
    4. Aya Amer & Khaled Shaban & Ahmed Gaouda & Ahmed Massoud, 2021. "Home Energy Management System Embedded with a Multi-Objective Demand Response Optimization Model to Benefit Customers and Operators," Energies, MDPI, vol. 14(2), pages 1-19, January.
    5. Aristotelis Tsimtsios & Dionisis Voglitsis & Ioannis Perpinias & Christos Korkas & Nick Papanikolaou, 2019. "On the Conflict between LVRT and Line Protection in LV Distribution Systems with PVs: A Current-Limitation-Based Solution," Energies, MDPI, vol. 12(15), pages 1-20, July.
    6. Rajavelu Dharani & Madasamy Balasubramonian & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Load Shifting and Peak Clipping for Reducing Energy Consumption in an Indian University Campus," Energies, MDPI, vol. 14(3), pages 1-16, January.
    7. Mahmoud Saleh & Yusef Esa & Mohamed El Hariri & Ahmed Mohamed, 2019. "Impact of Information and Communication Technology Limitations on Microgrid Operation," Energies, MDPI, vol. 12(15), pages 1-24, July.
    8. Sarat Chandra Vegunta & Michael J. Higginson & Yashar E. Kenarangui & George Tsai Li & David W. Zabel & Mohammad Tasdighi & Azadeh Shadman, 2021. "AC Microgrid Protection System Design Challenges—A Practical Experience," Energies, MDPI, vol. 14(7), pages 1-23, April.
    9. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Aillane & Karim Dahech & Larbi Chrifi-Alaoui & Aissa Chouder & Tarak Damak & Abdelhak Hadjkaddour & Pascal Bussy, 2023. "The Design and Processor-In-The-Loop Implementation of a Super-Twisting Control Algorithm Based on a Luenberger Observer for a Seamless Transition between Grid-Connected and Stand-Alone Modes in Micro," Energies, MDPI, vol. 16(9), pages 1-22, May.
    2. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    3. Biyun Chen & Haoying Chen & Yiyi Zhang & Junhui Zhao & Emad Manla, 2019. "Risk Assessment for the Power Grid Dispatching Process Considering the Impact of Cyber Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    6. Dhanuja Lekshmi J & Zakir Hussain Rather & Bikash C Pal, 2021. "A New Tool to Assess Maximum Permissible Solar PV Penetration in a Power System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    7. Sheha, Moataz & Mohammadi, Kasra & Powell, Kody, 2021. "Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage," Applied Energy, Elsevier, vol. 282(PA).
    8. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    9. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    10. Jaewan Suh & Minhan Yoon & Seungmin Jung, 2020. "Practical Application Study for Precision Improvement Plan for Energy Storage Devices Based on Iterative Methods," Energies, MDPI, vol. 13(3), pages 1-13, February.
    11. Jarosław Kulpa & Piotr Olczak & Tomasz Surma & Dominika Matuszewska, 2021. "Comparison of Support Programs for the Development of Photovoltaics in Poland: My Electricity Program and the RES Auction System," Energies, MDPI, vol. 15(1), pages 1-17, December.
    12. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    13. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    14. V S Bharath Kurukuru & Ahteshamul Haque & Arun Kumar Tripathy & Mohammed Ali Khan, 2022. "Machine learning framework for photovoltaic module defect detection with infrared images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1771-1787, August.
    15. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    16. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    17. Minh Nhut Ngo & Philippe Ladoux & Jérémy Martin & Sébastien Sanchez, 2022. "Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, January.
    18. Yahui Li & Pu Deng & Jing Zhang & Donghang Liu & Zhenghang Hao, 2020. "A Study of Interpolation Compensation Based Large Step Simulation of PWM Converters," Energies, MDPI, vol. 13(12), pages 1-16, June.
    19. Jose R Sicchar & Carlos T. Da Costa & Jose R. Silva & Raimundo C. Oliveira & Werbeston D. Oliveira, 2018. "A Load-Balance System Design of Microgrid Cluster Based on Hierarchical Petri Nets," Energies, MDPI, vol. 11(12), pages 1-30, November.
    20. Faisal Mumtaz & Haseeb Hassan Khan & Amad Zafar & Muhammad Umair Ali & Kashif Imran, 2022. "A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance," Energies, MDPI, vol. 15(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3979-:d:587438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.