IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1465-d150886.html
   My bibliography  Save this article

Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation

Author

Listed:
  • Kakou D. Kouassi

    (Ufr-SSMT Laboratory of Physics Condensed Matter and Technology, Université Félix Houphouet Boigny de Cocody-Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire)

  • Issouf Fofana

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Ladji Cissé

    (Ufr-SSMT Laboratory of Physics Condensed Matter and Technology, Université Félix Houphouet Boigny de Cocody-Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire)

  • Yazid Hadjadj

    (Measurement Sciences and Standards, National Research Council Canada (NRC), Ottawa, ON K1A 0R6, Canada)

  • Kouba M. Lucia Yapi

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • K. Ambroise Diby

    (Ufr-SSMT Laboratory of Physics Condensed Matter and Technology, Université Félix Houphouet Boigny de Cocody-Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire)

Abstract

Aging of a power transformer’s insulation system produces carboxylic acids. These acids—acetic, formic and levulinic—are absorbed by the paper insulating material, thus accelerating the degradation of the whole insulation system. In this contribution, the effect of these acids on the aging of oil-impregnated paper insulation used in power transformer is reported. A laboratory aging experiment considering different concentrations of these three acids was performed to assess their effect on the insulation system’s degradation. Each acid was individually mixed with virgin oil, and a mixture of acids was also blended with oil. The paper’s degradation was assessed by the degree of polymerization (DPv). It was found that the DPv of paper aged with formic acid decreased much faster in comparison to the other acids.

Suggested Citation

  • Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1465-:d:150886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fu Wan & Lingling Du & Weigen Chen & Pinyi Wang & Jianxin Wang & Haiyang Shi, 2017. "A Novel Method to Directly Analyze Dissolved Acetic Acid in Transformer Oil without Extraction Using Raman Spectroscopy," Energies, MDPI, vol. 10(7), pages 1-12, July.
    2. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, vol. 8(10), pages 1-40, October.
    3. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    4. Xiaobo Wang & Chao Tang & Bo Huang & Jian Hao & George Chen, 2018. "Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers," Energies, MDPI, vol. 11(3), pages 1-31, February.
    5. Kapila Bandara & Chandima Ekanayake & Tapan Saha & Hui Ma, 2016. "Performance of Natural Ester as a Transformer Oil in Moisture-Rich Environments," Energies, MDPI, vol. 9(4), pages 1-13, March.
    6. Issouf Fofana & Yazid Hadjadj, 2016. "Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(9), pages 1-26, August.
    7. Lei Peng & Qiang Fu & Yaohong Zhao & Yihua Qian & Tiansheng Chen & Shengping Fan, 2018. "A Non-Destructive Optical Method for the DP Measurement of Paper Insulation Based on the Free Fibers in Transformer Oil," Energies, MDPI, vol. 11(4), pages 1-9, March.
    8. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    2. Issouf Fofana & U. Mohan Rao, 2018. "Engineering Dielectric Liquid Applications," Energies, MDPI, vol. 11(10), pages 1-4, October.
    3. Tobias Münster & Peter Werle & Kai Hämel & Jörg Preusel, 2021. "Thermally Accelerated Aging of Insulation Paper for Transformers with Different Insulating Liquids," Energies, MDPI, vol. 14(11), pages 1-28, May.
    4. Leila Safiddine & Hadj-Ziane Zafour & Ungarala Mohan Rao & Issouf Fofana, 2019. "Regeneration of Transformer Insulating Fluids Using Membrane Separation Technology," Energies, MDPI, vol. 12(3), pages 1-13, January.
    5. Pawel Zukowski & Przemyslaw Rogalski & Konrad Kierczynski & Tomasz N. Koltunowicz, 2021. "Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation," Energies, MDPI, vol. 14(18), pages 1-24, September.
    6. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Koltunowicz & Konrad Kierczynski & Vitalii Bondariev, 2020. "Precise Measurements of the Temperature-Frequency Dependence of the Conductivity of Cellulose—Insulating Oil—Water Nanoparticles Composite," Energies, MDPI, vol. 14(1), pages 1-26, December.
    7. Enze Zhang & Jiang Liu & Chaohai Zhang & Peijun Zheng & Yosuke Nakanishi & Thomas Wu, 2023. "State-of-Art Review on Chemical Indicators for Monitoring the Aging Status of Oil-Immersed Transformer Paper Insulation," Energies, MDPI, vol. 16(3), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    2. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    3. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    4. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    5. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    6. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    7. Leila Safiddine & Hadj-Ziane Zafour & Ungarala Mohan Rao & Issouf Fofana, 2019. "Regeneration of Transformer Insulating Fluids Using Membrane Separation Technology," Energies, MDPI, vol. 12(3), pages 1-13, January.
    8. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    9. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    10. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    11. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    12. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    13. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    14. Chenmeng Zhang & Kailin Zhao & Shijun Xie & Can Hu & Yu Zhang & Nanxi Jiang, 2021. "Research on the Time-Domain Dielectric Response of Multiple Impulse Voltage Aging Oil-Film Dielectrics," Energies, MDPI, vol. 14(7), pages 1-15, April.
    15. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.
    16. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    17. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
    18. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    19. Wojciech Sikorski, 2018. "Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers," Energies, MDPI, vol. 12(1), pages 1-27, December.
    20. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1465-:d:150886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.