IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5802-d635247.html
   My bibliography  Save this article

Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation

Author

Listed:
  • Pawel Zukowski

    (Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38d, Nadbystrzycka Str., 20-618 Lublin, Poland)

  • Przemyslaw Rogalski

    (Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38d, Nadbystrzycka Str., 20-618 Lublin, Poland)

  • Konrad Kierczynski

    (Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38d, Nadbystrzycka Str., 20-618 Lublin, Poland)

  • Tomasz N. Koltunowicz

    (Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38d, Nadbystrzycka Str., 20-618 Lublin, Poland)

Abstract

The reference characteristics of complex permittivity of the transformers insulation solid component were determined for use in the precise diagnostics of the power transformers insulation state. The solid component is a composite of cellulose, insulating oil and water nanoparticles. Measurements were made in the frequency range from 10 −4 Hz to 5000 Hz at temperatures from 293.15 to 333.15 K. Uncertainty of temperature measurements was less than ±0.01 K. Pressboard impregnated with insulating oil with a water content of (5.0 ± 0.2) by weight moistened in a manner maximally similar to the moistening process in power transformers was investigated. It was found that there are two stages of changes in permittivity and imaginary permittivity components, occurring for low and high frequency. As the temperature increases, the frequency dependencies of the permittivity and imaginary permittivity component shifts to the higher frequency region. This phenomenon is related to the change of relaxation time with the increase in temperature. The values of relaxation time activation energies of the permittivity Δ W τε ′ ≈ (0.827 ± 0.0094) eV and the imaginary permittivity component Δ W τε ″ = 0.883 eV were determined. It was found that Cole-Cole charts for the first stage are asymmetric and similar to those described by the Dawidson–Cole relaxation. For stage two, the charts are arc-shaped, corresponding to the Cole-Cole relaxation. It has been established that in the moistened pressboard impregnated with insulating oil, there is an additional polarization mechanism associated with the occurrence of water in the form of nanodrops and the tunneling of electrons between them.

Suggested Citation

  • Pawel Zukowski & Przemyslaw Rogalski & Konrad Kierczynski & Tomasz N. Koltunowicz, 2021. "Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation," Energies, MDPI, vol. 14(18), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5802-:d:635247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Issouf Fofana & Yazid Hadjadj, 2016. "Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(9), pages 1-26, August.
    2. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Koltunowicz & Konrad Kierczynski & Jan Subocz & Marek Zenker, 2020. "Cellulose Ester Insulation of Power Transformers: Researching the Influence of Moisture on the Phase Shift Angle and Admittance," Energies, MDPI, vol. 13(20), pages 1-19, October.
    3. Miguel Martínez & Jorge Pleite, 2020. "Improvement of RVM Test Interpretation Using a Debye Equivalent Circuit," Energies, MDPI, vol. 13(2), pages 1-13, January.
    4. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    5. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    6. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Linao Li & Xinlao Wei, 2022. "Power Interference Suppression Method for Measuring Partial Discharges under Pulse Square Voltage Conditions," Energies, MDPI, vol. 15(9), pages 1-15, May.
    3. Pawel Zukowski & Przemyslaw Rogalski & Vitalii Bondariev & Milan Sebok, 2022. "Diagnostics of High Water Content Paper-Oil Transformer Insulation Based on the Temperature and Frequency Dependencies of the Loss Tangent," Energies, MDPI, vol. 15(8), pages 1-16, April.
    4. Tomasz N. Kołtunowicz & Konrad Kierczynski & Pawel Okal & Aleksy Patryn & Miroslav Gutten, 2022. "Diagnostics on the Basis of the Frequency-Temperature Dependences of the Loss Angle Tangent of Heavily Moistured Oil-Impregnated Pressboard," Energies, MDPI, vol. 15(8), pages 1-14, April.
    5. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Kołtunowicz & Konrad Kierczynski & Marek Zenker & Alexander D. Pogrebnjak & Matej Kucera, 2022. "DC and AC Tests of Moisture Electrical Pressboard Impregnated with Mineral Oil or Synthetic Ester—Determination of Water Status in Power Transformer Insulation," Energies, MDPI, vol. 15(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Zukowski & Przemyslaw Rogalski & Vitalii Bondariev & Milan Sebok, 2022. "Diagnostics of High Water Content Paper-Oil Transformer Insulation Based on the Temperature and Frequency Dependencies of the Loss Tangent," Energies, MDPI, vol. 15(8), pages 1-16, April.
    2. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.
    3. Tomasz N. Kołtunowicz & Konrad Kierczynski & Pawel Okal & Aleksy Patryn & Miroslav Gutten, 2022. "Diagnostics on the Basis of the Frequency-Temperature Dependences of the Loss Angle Tangent of Heavily Moistured Oil-Impregnated Pressboard," Energies, MDPI, vol. 15(8), pages 1-14, April.
    4. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    5. Leila Safiddine & Hadj-Ziane Zafour & Ungarala Mohan Rao & Issouf Fofana, 2019. "Regeneration of Transformer Insulating Fluids Using Membrane Separation Technology," Energies, MDPI, vol. 12(3), pages 1-13, January.
    6. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    7. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    8. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    9. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    10. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    11. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    12. Chenmeng Zhang & Kailin Zhao & Shijun Xie & Can Hu & Yu Zhang & Nanxi Jiang, 2021. "Research on the Time-Domain Dielectric Response of Multiple Impulse Voltage Aging Oil-Film Dielectrics," Energies, MDPI, vol. 14(7), pages 1-15, April.
    13. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Kołtunowicz & Konrad Kierczynski & Marek Zenker & Alexander D. Pogrebnjak & Matej Kucera, 2022. "DC and AC Tests of Moisture Electrical Pressboard Impregnated with Mineral Oil or Synthetic Ester—Determination of Water Status in Power Transformer Insulation," Energies, MDPI, vol. 15(8), pages 1-16, April.
    14. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    15. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    16. Wojciech Sikorski, 2018. "Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers," Energies, MDPI, vol. 12(1), pages 1-27, December.
    17. Amidou Betie & Fethi Meghnefi & Issouf Fofana & Zie Yeo, 2018. "Modeling the Insulation Paper Drying Process from Thermogravimetric Analyses," Energies, MDPI, vol. 11(3), pages 1-15, February.
    18. Guoqiang Xia & Guangning Wu & Bo Gao & Haojie Yin & Feibao Yang, 2017. "A New Method for Evaluating Moisture Content and Aging Degree of Transformer Oil-Paper Insulation Based on Frequency Domain Spectroscopy," Energies, MDPI, vol. 10(8), pages 1-15, August.
    19. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    20. Enze Zhang & Jiang Liu & Chaohai Zhang & Peijun Zheng & Yosuke Nakanishi & Thomas Wu, 2023. "State-of-Art Review on Chemical Indicators for Monitoring the Aging Status of Oil-Immersed Transformer Paper Insulation," Energies, MDPI, vol. 16(3), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5802-:d:635247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.