IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2924-d795117.html
   My bibliography  Save this article

Diagnostics on the Basis of the Frequency-Temperature Dependences of the Loss Angle Tangent of Heavily Moistured Oil-Impregnated Pressboard

Author

Listed:
  • Tomasz N. Kołtunowicz

    (Department of Electrical Devices High Voltage Technology, Faculty of Electrical Engineering Computer Science, Lublin University of Technology, 38A, Nadbystrzycka Str., 20-618 Lublin, Poland)

  • Konrad Kierczynski

    (Department of Electrical Devices High Voltage Technology, Faculty of Electrical Engineering Computer Science, Lublin University of Technology, 38A, Nadbystrzycka Str., 20-618 Lublin, Poland)

  • Pawel Okal

    (Department of Electrical Devices High Voltage Technology, Faculty of Electrical Engineering Computer Science, Lublin University of Technology, 38A, Nadbystrzycka Str., 20-618 Lublin, Poland)

  • Aleksy Patryn

    (Department of Electronics, Faculty of Electronics and Computer Science, Koszalin University of Technology, 2, Sniadeckich Str., 75-453 Koszalin, Poland)

  • Miroslav Gutten

    (Department of Measurement and Application Electrical Engineering, University of Zilina, 8215/1 Univerzitná, 01026 Zilina, Slovakia)

Abstract

The aim of this study was to perform precision measurements of the frequency-temperature dependences of the loss angle tangent of the liquid-solid composite with the FDS Dirana meter. The composite consisted of heavily moistered oil-impregnated pressboard. The moisturization of the pressboard occurred in a manner as close as possible to the process of wetting the insulation in power transformers to a moisture content of (5.0 ± 0.2) wt. %. This value of moisture content was chosen because exceeding this value can lead to transformer failure. The measuring temperature range was from 293.15 K (20 °C) to 333.15 K (60 °C), with a step of 8 K. The measuring frequency range was 0.0001 Hz to 5000 Hz. It was observed that the shape of the frequency dependence of the loss angle tangent for a moisture content of 5.0 wt. % does not depend on the value of the measuring temperature. An increase in temperature leads to a shift of the waveforms into the higher frequency region. This is associated with a decrease in the relaxation time, and its value depends on the activation energy. It was found that a good fit of the waveforms, simulated by Dirana, to the actual tgδ waveforms obtained at temperatures between 293.15 K (20 °C) and 333.15 K (60 °C) requires the introduction of temperatures, higher than the actual insulation temperatures, into the program. It was found that estimating the moisture content for different temperatures using Dirana soft-ware for insulating an oil-impregnated pressboard produced large discrepancies from the actual content. Better results were obtained after an adjustment requiring manual temperature correction towards higher, compared to measured, temperatures. The moisture content estimated after correction by the Dirana meter ranges from of 4.5 wt. % to 5.7 wt. % and increases almost linearly with increasing measuring temperature. The average moisture content estimated by the Dirana meter for all measuring temperatures is 5.1 wt. % and is close to the actual content (5.0 ± 0.2) wt. %. The uncertainty of the estimate is ±0.43 wt. % and is more than twice as high as the true value.

Suggested Citation

  • Tomasz N. Kołtunowicz & Konrad Kierczynski & Pawel Okal & Aleksy Patryn & Miroslav Gutten, 2022. "Diagnostics on the Basis of the Frequency-Temperature Dependences of the Loss Angle Tangent of Heavily Moistured Oil-Impregnated Pressboard," Energies, MDPI, vol. 15(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2924-:d:795117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Qi & Quanmin Dai & Chengrong Li & Zipeng Zeng & Mingli Fu & Ran Zhuo, 2018. "The Mechanism and Diagnosis of Insulation Deterioration Caused by Moisture Ingress into Oil-Impregnated Paper Bushing," Energies, MDPI, vol. 11(6), pages 1-12, June.
    2. Stefan Wolny & Adam Krotowski, 2020. "Analysis of Polarization and Depolarization Currents of Samples of NOMEX ® 910 Cellulose–Aramid Insulation Impregnated with Mineral Oil," Energies, MDPI, vol. 13(22), pages 1-18, November.
    3. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Koltunowicz & Konrad Kierczynski & Jan Subocz & Marek Zenker, 2020. "Cellulose Ester Insulation of Power Transformers: Researching the Influence of Moisture on the Phase Shift Angle and Admittance," Energies, MDPI, vol. 13(20), pages 1-19, October.
    4. Miguel Martínez & Jorge Pleite, 2020. "Improvement of RVM Test Interpretation Using a Debye Equivalent Circuit," Energies, MDPI, vol. 13(2), pages 1-13, January.
    5. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    6. Mateusz Cybulski & Piotr Przybylek, 2021. "Application of Molecular Sieves for Drying Transformers Insulated with Mineral Oil, Natural Ester, or Synthetic Ester," Energies, MDPI, vol. 14(6), pages 1-13, March.
    7. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    8. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    9. Pawel Zukowski & Przemyslaw Rogalski & Konrad Kierczynski & Tomasz N. Koltunowicz, 2021. "Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation," Energies, MDPI, vol. 14(18), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Zukowski & Przemyslaw Rogalski & Vitalii Bondariev & Milan Sebok, 2022. "Diagnostics of High Water Content Paper-Oil Transformer Insulation Based on the Temperature and Frequency Dependencies of the Loss Tangent," Energies, MDPI, vol. 15(8), pages 1-16, April.
    2. Pawel Zukowski & Przemyslaw Rogalski & Konrad Kierczynski & Tomasz N. Koltunowicz, 2021. "Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation," Energies, MDPI, vol. 14(18), pages 1-24, September.
    3. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Kołtunowicz & Konrad Kierczynski & Marek Zenker & Alexander D. Pogrebnjak & Matej Kucera, 2022. "DC and AC Tests of Moisture Electrical Pressboard Impregnated with Mineral Oil or Synthetic Ester—Determination of Water Status in Power Transformer Insulation," Energies, MDPI, vol. 15(8), pages 1-16, April.
    4. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.
    5. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    6. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    7. Hubert Moranda & Jaroslaw Gielniak & Ireneusz Kownacki, 2021. "Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It," Energies, MDPI, vol. 14(7), pages 1-12, March.
    8. Zbigniew Nadolny, 2022. "Impact of Changes in Limit Values of Electric and Magnetic Field on Personnel Performing Diagnostics of Transformers," Energies, MDPI, vol. 15(19), pages 1-15, October.
    9. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.
    10. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Shabana Urooj & Lucian Mihet-Popa, 2022. "An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids," Energies, MDPI, vol. 15(23), pages 1-14, December.
    11. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    12. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    13. Linao Li & Xinlao Wei, 2022. "Power Interference Suppression Method for Measuring Partial Discharges under Pulse Square Voltage Conditions," Energies, MDPI, vol. 15(9), pages 1-15, May.
    14. Krzysztof Walczak & Jaroslaw Gielniak, 2021. "Temperature Distribution in the Insulation System of Condenser-Type HV Bushing—Its Effect on Dielectric Response in the Frequency Domain," Energies, MDPI, vol. 14(13), pages 1-18, July.
    15. Mohammad Kharezy & Hassan Reza Mirzaei & Torbjörn Thiringer & Yuriy V. Serdyuk, 2022. "Green Solution for Insulation System of a Medium Frequency High Voltage Transformer for an Offshore Wind Farm," Energies, MDPI, vol. 15(6), pages 1-21, March.
    16. Stefan Wolny & Adam Krotowski, 2020. "Analysis of Polarization and Depolarization Currents of Samples of NOMEX ® 910 Cellulose–Aramid Insulation Impregnated with Mineral Oil," Energies, MDPI, vol. 13(22), pages 1-18, November.
    17. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Yehya S. Mohamed & Hassan Haes Alhelou & Pierluigi Siano, 2021. "Transformers Improvement and Environment Conservation by Using Synthetic Esters in Egypt," Energies, MDPI, vol. 14(7), pages 1-15, April.
    18. Fenglan Tian & Zhongzhao Jing & Huan Zhao & Enze Zhang & Jiefeng Liu, 2019. "A Synthetic Condition Assessment Model for Power Transformers Using the Fuzzy Evidence Fusion Method," Energies, MDPI, vol. 12(5), pages 1-17, March.
    19. Zhonghuan Su & Longfu Luo & Jun Liu & Zhongxiang Li & Hu Luo & Haonan Bai, 2022. "The Study of VFTO Distribution in the Insulation System of IOCT Used in Traction Network," Energies, MDPI, vol. 15(2), pages 1-13, January.
    20. Mingxi Zhu & Liming Wang & Fanghui Yin & Masoud Farzaneh & Hongwei Mei & Lu Wen, 2018. "The Effect of a Vertical Electric Field on the Surface Flashover Characteristics of a Bushing Model," Energies, MDPI, vol. 11(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2924-:d:795117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.