IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p343-d1017880.html
   My bibliography  Save this article

Dielectric Performance of Natural- and Synthetic-Ester-Based Nanofluids with Fullerene Nanoparticles

Author

Listed:
  • Miloš Šárpataky

    (Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia)

  • Juraj Kurimský

    (Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia)

  • Michal Rajňák

    (Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia
    Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice, Slovakia)

  • Michal Krbal

    (Department of Electrical Power Engineering FEEC, Brno University of Technology, Technická 10, 61600 Brno, Czech Republic)

  • Marek Adamčák

    (Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, Slovakia)

Abstract

According to the latest research, nanofluids as a possible future substitution for high-voltage equipment insulation have the potential to enhance the heat transfer and insulation properties of their base fluids. Dielectric properties are represented by breakdown strength (AC, DC, lightning) and dielectric performance as a set of quantities including dissipation factor, permittivity, and volume resistivity. In this study, natural and synthetic esters were mixed with C 60 nanoparticles. Samples were examined for dissipation factor, relative permittivity, and volume resistivity at temperatures between 25 °C and 140 °C to monitor changes in dielectric performance with rising temperature, in accordance with IEC 60247. In addition, the samples were tested for AC breakdown voltage (using mushroom-like electrodes with a gap distance of 1 mm) and evaluated using the Weibull distribution statistical method. These measurements allowed complex evaluation of the examined mixtures and the determination of optimal concentration for each ester-based nanofluid.

Suggested Citation

  • Miloš Šárpataky & Juraj Kurimský & Michal Rajňák & Michal Krbal & Marek Adamčák, 2022. "Dielectric Performance of Natural- and Synthetic-Ester-Based Nanofluids with Fullerene Nanoparticles," Energies, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:343-:d:1017880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Havran & Roman Cimbala & Juraj Kurimský & Bystrík Dolník & Iraida Kolcunová & Dušan Medveď & Jozef Király & Vladimír Kohan & Ľuboš Šárpataky, 2022. "Dielectric Properties of Electrical Insulating Liquids for High Voltage Electric Devices in a Time-Varying Electric Field," Energies, MDPI, vol. 15(1), pages 1-21, January.
    2. Vaclav Mentlik & Pavel Trnka & Jaroslav Hornak & Pavel Totzauer, 2018. "Development of a Biodegradable Electro-Insulating Liquid and Its Subsequent Modification by Nanoparticles," Energies, MDPI, vol. 11(3), pages 1-16, February.
    3. Vasilios P. Charalampakos & Georgios D. Peppas & Eleftheria C. Pyrgioti & Aristides Bakandritsos & Aikaterini D. Polykrati & Ioannis F. Gonos, 2019. "Dielectric Insulation Characteristics of Natural Ester Fluid Modified by Colloidal Iron Oxide Ions and Silica Nanoparticles," Energies, MDPI, vol. 12(17), pages 1-11, August.
    4. Konstantinos N. Koutras & Ioannis A. Naxakis & Eleftheria C. Pyrgioti & Vasilios P. Charalampakos & Ioannis F. Gonos & Aspasia E. Antonelou & Spyros N. Yannopoulos, 2020. "The Influence of Nanoparticles’ Conductivity and Charging on Dielectric Properties of Ester Oil Based Nanofluid," Energies, MDPI, vol. 13(24), pages 1-16, December.
    5. Yachao Wang & Feipeng Wang & Jian Li & Suning Liang & Jinghan Zhou, 2018. "Electronic Properties of Typical Molecules and the Discharge Mechanism of Vegetable and Mineral Insulating Oils," Energies, MDPI, vol. 11(3), pages 1-13, February.
    6. Dominika Szcześniak & Piotr Przybylek, 2021. "Oxidation Stability of Natural Ester Modified by Means of Fullerene Nanoparticles," Energies, MDPI, vol. 14(2), pages 1-13, January.
    7. Hidir Duzkaya & Abderrahmane Beroual, 2020. "Statistical Analysis of AC Dielectric Strength of Natural Ester-Based ZnO Nanofluids," Energies, MDPI, vol. 14(1), pages 1-11, December.
    8. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.
    2. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    3. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Yehya S. Mohamed & Hassan Haes Alhelou & Pierluigi Siano, 2021. "Transformers Improvement and Environment Conservation by Using Synthetic Esters in Egypt," Energies, MDPI, vol. 14(7), pages 1-15, April.
    4. Issouf Fofana & U. Mohan Rao, 2018. "Engineering Dielectric Liquid Applications," Energies, MDPI, vol. 11(10), pages 1-4, October.
    5. Łukasz Nagi & Mateusz Bogacz, 2023. "Statistical Analysis of Breakdown Voltage of Insulating Liquid Dopped with Surfactants," Energies, MDPI, vol. 16(3), pages 1-23, January.
    6. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    7. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Shabana Urooj & Lucian Mihet-Popa, 2022. "An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids," Energies, MDPI, vol. 15(23), pages 1-14, December.
    8. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    9. Dariusz Zmarzły & Paweł Frącz, 2021. "Measurement of Dielectric Liquid Electrification in the Shuttle System with Two Parallel Electrodes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    10. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Mohammad Kharezy & Hassan Reza Mirzaei & Torbjörn Thiringer & Yuriy V. Serdyuk, 2022. "Green Solution for Insulation System of a Medium Frequency High Voltage Transformer for an Offshore Wind Farm," Energies, MDPI, vol. 15(6), pages 1-21, March.
    12. Pawel Rozga & Filip Stuchala & Tomasz Piotrowski & Abderrahmane Beroual, 2022. "Influence of Temperature on Lightning Performance of Mineral Oil," Energies, MDPI, vol. 15(3), pages 1-11, January.
    13. Ioannis F. Gonos & Issouf Fofana, 2020. "Special Issue “Selected Papers from the 2018 IEEE International Conference on High Voltage Engineering (ICHVE 2018)”," Energies, MDPI, vol. 13(18), pages 1-5, September.
    14. Dominika Szcześniak & Piotr Przybylek, 2021. "Oxidation Stability of Natural Ester Modified by Means of Fullerene Nanoparticles," Energies, MDPI, vol. 14(2), pages 1-13, January.
    15. Pawel Zukowski & Przemyslaw Rogalski & Vitalii Bondariev & Milan Sebok, 2022. "Diagnostics of High Water Content Paper-Oil Transformer Insulation Based on the Temperature and Frequency Dependencies of the Loss Tangent," Energies, MDPI, vol. 15(8), pages 1-16, April.
    16. Jun Wu & Junhui Zhang, 2020. "Research and Development of Natural Vegetable Insulating Oil Based on Jatropha curcas Seed Oil," Energies, MDPI, vol. 13(17), pages 1-12, August.
    17. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    18. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    19. Tomasz N. Kołtunowicz & Konrad Kierczynski & Pawel Okal & Aleksy Patryn & Miroslav Gutten, 2022. "Diagnostics on the Basis of the Frequency-Temperature Dependences of the Loss Angle Tangent of Heavily Moistured Oil-Impregnated Pressboard," Energies, MDPI, vol. 15(8), pages 1-14, April.
    20. Piotr Przybylek, 2022. "Application of Near-Infrared Spectroscopy to Measure the Water Content in Liquid Dielectrics," Energies, MDPI, vol. 15(16), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:343-:d:1017880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.