IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5418-d872783.html
   My bibliography  Save this article

Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations

Author

Listed:
  • Teresa Nogueira

    (School of Engineering, Polytechnic Institute of Porto (P. Porto), 4249-015 Porto, Portugal
    Center for Innovation in Engineering and Industrial Technology (CIETI), P. Porto, 4249-015 Porto, Portugal)

  • José Carvalho

    (School of Engineering, Polytechnic Institute of Porto (P. Porto), 4249-015 Porto, Portugal
    Center for Innovation in Engineering and Industrial Technology (CIETI), P. Porto, 4249-015 Porto, Portugal)

  • José Magano

    (Research Center in Business and Economics (CICEE), Universidade Autónoma de Lisboa, 1150-293 Lisboa, Portugal
    Higher Institute of Business and Tourism Sciences (ISCET), 4050-180 Porto, Portugal)

Abstract

Mineral oil has long been used as an adequate coolant and dielectric medium in power transformer design. However, it is flammable and environmentally risky as it may be leaked or spilled. Therefore, ester fluids, which have been increasingly used in the last two decades, look promising as an ideal dielectric option. This research aims to better understand how using ester fluid insulation in power transformers impacts their physical and electrical dimensions, including their load-losses, impedance, masses, and equipment dimensions. Three case studies were carried out in a Portuguese electrical equipment manufacturer’s facility, with varying electrical parameters and physical properties of the mineral oil and ester-filled power transformers. The main results enhanced the known good electrical behavior of ester fluids, namely creating a lower electric field around winding wedges, yet the use of ester fluids led to higher load-losses, larger masses, additional radiators and, consequently, higher manufacturing costs. Nevertheless, the contribution of ester-filled power transformers to the improved environmental safety (reducing spillage and fire risks), among other advantages, makes ester fluids a truly eco-friendly option for power transformer design.

Suggested Citation

  • Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5418-:d:872783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bojan Trkulja & Ana Drandić & Viktor Milardić & Igor Žiger, 2021. "Evaluation of Methodology for Lightning Impulse Voltage Distribution over High-Voltage Windings of Inductive Voltage Transformers," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Xiaobo Wang & Chao Tang & Bo Huang & Jian Hao & George Chen, 2018. "Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers," Energies, MDPI, vol. 11(3), pages 1-31, February.
    3. Belén García & Alfredo Ortiz & Carlos Renedo & Diego Fernando García & Andrés Montero, 2021. "Use Performance and Management of Biodegradable Fluids as Transformer Insulation," Energies, MDPI, vol. 14(19), pages 1-18, October.
    4. Peter Havran & Roman Cimbala & Juraj Kurimský & Bystrík Dolník & Iraida Kolcunová & Dušan Medveď & Jozef Király & Vladimír Kohan & Ľuboš Šárpataky, 2022. "Dielectric Properties of Electrical Insulating Liquids for High Voltage Electric Devices in a Time-Varying Electric Field," Energies, MDPI, vol. 15(1), pages 1-21, January.
    5. Tobias Münster & Peter Werle & Kai Hämel & Jörg Preusel, 2021. "Thermally Accelerated Aging of Insulation Paper for Transformers with Different Insulating Liquids," Energies, MDPI, vol. 14(11), pages 1-28, May.
    6. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Cláudia Sousa Silva & José Magano & Ana Matos & Teresa Nogueira, 2021. "Sustainable Quality Management Systems in the Current Paradigm: The Role of Leadership," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    8. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    2. J. Sanz & C. J. Renedo & A. Ortiz & P. J. Quintanilla & F. Ortiz & D. F. García, 2023. "A Brief Review of the Impregnation Process with Dielectric Fluids of Cellulosic Materials Used in Electric Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Yehya S. Mohamed & Hassan Haes Alhelou & Pierluigi Siano, 2021. "Transformers Improvement and Environment Conservation by Using Synthetic Esters in Egypt," Energies, MDPI, vol. 14(7), pages 1-15, April.
    2. Pawel Rozga & Filip Stuchala & Tomasz Piotrowski & Abderrahmane Beroual, 2022. "Influence of Temperature on Lightning Performance of Mineral Oil," Energies, MDPI, vol. 15(3), pages 1-11, January.
    3. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    4. Miloš Šárpataky & Juraj Kurimský & Michal Rajňák & Michal Krbal & Marek Adamčák, 2022. "Dielectric Performance of Natural- and Synthetic-Ester-Based Nanofluids with Fullerene Nanoparticles," Energies, MDPI, vol. 16(1), pages 1-15, December.
    5. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    6. Piotr Przybylek, 2022. "Application of Near-Infrared Spectroscopy to Measure the Water Content in Liquid Dielectrics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    7. Bartlomiej Pasternak & Pawel Rozga, 2023. "Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress," Energies, MDPI, vol. 16(2), pages 1-11, January.
    8. Belén García & Alfredo Ortiz & Carlos Renedo & Diego Fernando García & Andrés Montero, 2021. "Use Performance and Management of Biodegradable Fluids as Transformer Insulation," Energies, MDPI, vol. 14(19), pages 1-18, October.
    9. Inmaculada Fernández, 2022. "The Need for Experimental and Numerical Analyses of Thermal Ageing in Power Transformers," Energies, MDPI, vol. 15(17), pages 1-4, September.
    10. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.
    11. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    12. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Shabana Urooj & Lucian Mihet-Popa, 2022. "An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids," Energies, MDPI, vol. 15(23), pages 1-14, December.
    13. José Magano & Gilbert Silvius & Cláudia Sousa Silva & Ângela Leite, 2021. "Exploring Characteristics of Sustainability Stimulus Patterns of Project Managers," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    14. Stephanie Azlyn Anak Felix & Muhamad Faiz Md Din & Asnor Mazuan Ishak & Jianli Wang & Nurul Hayati Idris & Wan Fathul Hakim Wan Zamri, 2023. "Investigation of the Electrical Properties of Mineral Oils with and without Carbon Nanotube Concentration under Different Magnetic Fields Applied in Transformer Applications," Energies, MDPI, vol. 16(8), pages 1-15, April.
    15. Abdulilah Mohammad Mayet & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & Robert Hanus & Ehsan Nazemi & Igor M. Narozhnyy, 2022. "Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems," Energies, MDPI, vol. 15(6), pages 1-19, March.
    16. Mohammad Kharezy & Hassan Reza Mirzaei & Torbjörn Thiringer & Yuriy V. Serdyuk, 2022. "Green Solution for Insulation System of a Medium Frequency High Voltage Transformer for an Offshore Wind Farm," Energies, MDPI, vol. 15(6), pages 1-21, March.
    17. Piotr Przybylek & Jaroslaw Gielniak, 2023. "The Use of Methanol Vapour for Effective Drying of Cellulose Insulation," Energies, MDPI, vol. 16(11), pages 1-11, May.
    18. Hongyan Nie & Hongxin Wang & Wei Wang & Yuanhang Yao, 2023. "Detection of Interturn Short-Circuit Faults in Dry-Type Voltage Transformers Using the Pulse Voltage Method," Energies, MDPI, vol. 16(19), pages 1-15, September.
    19. Alena Pauliková & Katarína Lestyánszka Škůrková & Lucia Kopilčáková & Antoaneta Zhelyazkova-Stoyanova & Damyan Kirechev, 2021. "Innovative Approaches to Model Visualization for Integrated Management Systems," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    20. Lucian Ispas & Costel Mironeasa & Alessandro Silvestri, 2023. "Risk-Based Approach in the Implementation of Integrated Management Systems: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5418-:d:872783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.