IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006656.html
   My bibliography  Save this article

Preparation and performance characterization of multi-component mixed insulating oil for transformers based on the structure-activity relationship between molecular structure and impulse discharge performance

Author

Listed:
  • Hao, Jian
  • Ye, Wenyu
  • Zhang, Jingwen
  • Li, Jiacong
  • Zhang, Hanting
  • Liao, Ruijin

Abstract

Based on the structure-activity relationship of the molecular structure and properties of insulating oil, this paper prepared a multi-component mixed insulating oil through the guidance of density functional theory simulation and impulse experiment verification. The formulation of this multi-component mixed insulating oil involves the use of mineral oil, soybean oil, ethylhexyl laurate, and isooctyl laurate as base oils. The comprehensive physical, chemical, and electrical performance parameters of the multi-component mixed insulating oil were thoroughly tested, and all of them met the IEC 60296-(2012) standard. Compared with mineral oil, multi-component mixed insulating oil has greater advantages in kinematic viscosity, pour point, flash point, power frequency breakdown voltage, specific heat capacity and thermal conductivity. Compared with ester insulating oil and existing mixed insulating oil, the lightning impulse breakdown voltage of multi-component mixed insulating oil is about 8.19%–77.14 % higher. The multi-component mixed insulating oil has the potential to serve as a substitute for mineral oil in power transformers without necessitating any structural changes to the transformers. Furthermore, it achieves a dual-effect enhancement in insulation performance and thermal stability.

Suggested Citation

  • Hao, Jian & Ye, Wenyu & Zhang, Jingwen & Li, Jiacong & Zhang, Hanting & Liao, Ruijin, 2025. "Preparation and performance characterization of multi-component mixed insulating oil for transformers based on the structure-activity relationship between molecular structure and impulse discharge per," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006656
    DOI: 10.1016/j.energy.2025.135023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Ye, Wenyu & Hao, Jian & Zhang, Junyi & Zhang, Jingwen & Gao, Chenyu & Liao, Ruijin, 2023. "Atomic scale microparameter analysis of modified natural ester molecules related to impulse discharge characteristics under electric field," Renewable Energy, Elsevier, vol. 219(P1).
    3. Nurul Izzatul Akma Katim & Mohd Taufiq Ishak & Nur Aqilah Mohamad Amin & Mardhiah Hayati Abdul Hamid & Khairol Amali Ahmad & Norhafiz Azis, 2018. "Lightning Breakdown Voltage Evaluation of Palm Oil and Coconut Oil as Transformer Oil under Quasi-Uniform Field Conditions," Energies, MDPI, vol. 11(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    2. Nur Sabrina Suhaimi & Muhamad Faiz Md Din & Abdul Rashid Abdul Rahman & Mardhiah Hayati Abdul Hamid & Nur Aqilah Mohamad Amin & Wan Fathul Hakim Wan Zamri & Jianli Wang, 2020. "Optimum Electrical and Dielectric Performance of Multi-Walled Carbon Nanotubes Doped Disposed Transformer Oil," Energies, MDPI, vol. 13(12), pages 1-19, June.
    3. Abdulilah Mohammad Mayet & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & Robert Hanus & Ehsan Nazemi & Igor M. Narozhnyy, 2022. "Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems," Energies, MDPI, vol. 15(6), pages 1-19, March.
    4. Das, Anu Kumar & Ch Shill, Dayal & Chatterjee, Saibal, 2022. "Coconut oil for utility transformers – Environmental safety and sustainability perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Nur Sabrina Suhaimi & Mohd Taufiq Ishak & Muhamad Faiz Md Din & Fakhroul Ridzuan Hashim & Abdul Rashid Abdul Rahman, 2022. "Raman Spectroscopy Characterization of Mineral Oil and Palm Oil with Added Multi-Walled Carbon Nanotube for Application in Oil-Filled Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.
    6. Enze Zhang & Jiang Liu & Chaohai Zhang & Peijun Zheng & Yosuke Nakanishi & Thomas Wu, 2023. "State-of-Art Review on Chemical Indicators for Monitoring the Aging Status of Oil-Immersed Transformer Paper Insulation," Energies, MDPI, vol. 16(3), pages 1-31, January.
    7. Pawel Rozga & Filip Stuchala & Tomasz Piotrowski & Abderrahmane Beroual, 2022. "Influence of Temperature on Lightning Performance of Mineral Oil," Energies, MDPI, vol. 15(3), pages 1-11, January.
    8. Chen, Rui & Qiu, Qinpan & Peng, Xiao & Tang, Chao, 2023. "Surface modified h-BN towards enhanced electrical properties and thermal conductivity of natural ester insulating oil," Renewable Energy, Elsevier, vol. 204(C), pages 185-196.
    9. Mardhiah Hayati Abdul Hamid & Mohd Taufiq Ishak & Nur Sabrina Suhaimi & Jaafar Adnan & Nazrul Fariq Makmor & Nurul Izzatul Akma Katim & Rahisham Abd Rahman, 2021. "Lightning Impulse Breakdown Voltage of Rice Bran Oil for Transformer Application," Energies, MDPI, vol. 14(16), pages 1-22, August.
    10. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    11. Ye, Wenyu & Hao, Jian & Zhang, Junyi & Zhang, Jingwen & Gao, Chenyu & Liao, Ruijin, 2023. "Atomic scale microparameter analysis of modified natural ester molecules related to impulse discharge characteristics under electric field," Renewable Energy, Elsevier, vol. 219(P1).
    12. Bartlomiej Pasternak & Pawel Rozga, 2023. "Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress," Energies, MDPI, vol. 16(2), pages 1-11, January.
    13. Grzegorz Dombek & Jarosław Gielniak, 2023. "Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations," Energies, MDPI, vol. 16(10), pages 1-14, May.
    14. Samson Okikiola Oparanti & Ungarala Mohan Rao & Issouf Fofana, 2022. "Natural Esters for Green Transformers: Challenges and Keys for Improved Serviceability," Energies, MDPI, vol. 16(1), pages 1-23, December.
    15. Zhang, Kai & Huang, Zhengyong & Li, Jian, 2025. "Probing the mechanism of antioxidant and oxidative stability properties of gallic acid and its esters in natural esters: Computational investigations and experiments," Renewable Energy, Elsevier, vol. 239(C).
    16. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Li, Xiang & Wu, Junsong & Zhu, Xinyu & Liang, Huixing, 2022. "Agricultural waste-to-energy concerning a biofuel-fed molten carbonate fuel cell toward a novel trigeneration scheme; exergoeconomic/sustainability study and multi-objective optimization," Renewable Energy, Elsevier, vol. 199(C), pages 1189-1209.
    18. Belén García & Alfredo Ortiz & Carlos Renedo & Diego Fernando García & Andrés Montero, 2021. "Use Performance and Management of Biodegradable Fluids as Transformer Insulation," Energies, MDPI, vol. 14(19), pages 1-18, October.
    19. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.