IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2002-d1071956.html
   My bibliography  Save this article

Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review

Author

Listed:
  • Andrew Adewunmi Adekunle

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), University of Quebec at Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Samson Okikiola Oparanti

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), University of Quebec at Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Issouf Fofana

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), University of Quebec at Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

Abstract

Insulation cellulose paper is a basic measure for a power transformer’s remaining useful life, and its advantageous low cost, electrical, and mechanical properties have made it an extensive insulation system when impregnated in a dielectric liquid. Cellulose paper deteriorates as a result of ageing due to some chemical reactions like pyrolysis (heat), hydrolysis (moisture), and oxidation (oxygen) that affects its degree of polymerization. The condition analysis of cellulose paper has been a major concern since the collection of paper samples from an operational power transformer is almost impossible. However, some chemicals generated during cellulose paper deterioration, which were dissolved in dielectric liquid, have been used alternatively for this purpose as they show a direct correlation with the paper’s degree of polymerization. Furthermore, online and non-destructive measurement of the degree of polymerization by optical sensors has been proposed recently but is yet to be available in the market and is yet generally acceptable. In mitigating the magnitude of paper deterioration, some ageing assessments have been proposed. Furthermore, researchers have successfully enhanced the insulating performance of oil-impregnated insulation paper by the addition of various types of nanoparticles. This study reviews the ageing assessment of oil-paper composite insulation and the effect of nanoparticles on tensile strength and electrical properties of oil-impregnated paper insulation. It includes not only significant tutorial elements but also some analyses, which open the door for further research on the topic.

Suggested Citation

  • Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2002-:d:1071956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Issouf Fofana & Yazid Hadjadj, 2016. "Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(9), pages 1-26, August.
    2. Michail Michelarakis & Phillip Widger & Abderrahmane Beroual & Abderrahmane (Manu) Haddad, 2019. "Electrical Detection of Creeping Discharges over Insulator Surfaces in Atmospheric Gases under AC Voltage Application," Energies, MDPI, vol. 12(15), pages 1-15, August.
    3. Vahid Behjat & Reza Emadifar & Mehrdad Pourhossein & U. Mohan Rao & Issouf Fofana & Reza Najjar, 2021. "Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators," Energies, MDPI, vol. 14(13), pages 1-13, July.
    4. Daniel Pérez-Rosa & Belén García & Juan Carlos Burgos, 2022. "Influence of Nanoparticles on the Degradation Processes of Ester-Based Transformer Insulation Systems," Energies, MDPI, vol. 15(4), pages 1-13, February.
    5. Junping Zhao & Zhengjie An & Bin Lv & Zhicheng Wu & Qiaogen Zhang, 2020. "Characteristics of the Partial Discharge in the Development of Conductive Particle-Initiated Flashover of a GIS Insulator," Energies, MDPI, vol. 13(10), pages 1-11, May.
    6. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    7. Bonginkosi A. Thango & Pitshou N. Bokoro, 2022. "Prediction of the Degree of Polymerization in Transformer Cellulose Insulation Using the Feedforward Backpropagation Artificial Neural Network," Energies, MDPI, vol. 15(12), pages 1-12, June.
    8. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    9. Jocelyn Jalbert & Esperanza M. Rodriguez-Celis & Oscar H. Arroyo-Fernández & Steve Duchesne & Brigitte Morin, 2019. "Methanol Marker for the Detection of Insulating Paper Degradation in Transformer Insulating Oil," Energies, MDPI, vol. 12(20), pages 1-30, October.
    10. Guoqiang Xia & Guangning Wu & Bo Gao & Haojie Yin & Feibao Yang, 2017. "A New Method for Evaluating Moisture Content and Aging Degree of Transformer Oil-Paper Insulation Based on Frequency Domain Spectroscopy," Energies, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enze Zhang & Jiang Liu & Chaohai Zhang & Peijun Zheng & Yosuke Nakanishi & Thomas Wu, 2023. "State-of-Art Review on Chemical Indicators for Monitoring the Aging Status of Oil-Immersed Transformer Paper Insulation," Energies, MDPI, vol. 16(3), pages 1-31, January.
    2. Pawel Zukowski & Przemyslaw Rogalski & Konrad Kierczynski & Tomasz N. Koltunowicz, 2021. "Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation," Energies, MDPI, vol. 14(18), pages 1-24, September.
    3. Leila Safiddine & Hadj-Ziane Zafour & Ungarala Mohan Rao & Issouf Fofana, 2019. "Regeneration of Transformer Insulating Fluids Using Membrane Separation Technology," Energies, MDPI, vol. 12(3), pages 1-13, January.
    4. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    5. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    6. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    7. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    8. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    9. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    10. Amidou Betie & Fethi Meghnefi & Issouf Fofana & Zie Yeo, 2018. "Modeling the Insulation Paper Drying Process from Thermogravimetric Analyses," Energies, MDPI, vol. 11(3), pages 1-15, February.
    11. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    12. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    13. Michał Kunicki & Sebastian Borucki & Andrzej Cichoń & Jerzy Frymus, 2019. "Modeling of the Winding Hot-Spot Temperature in Power Transformers: Case Study of the Low-Loaded Fleet," Energies, MDPI, vol. 12(18), pages 1-17, September.
    14. Veeresh Ramnarine & Vidyadhar Peesapati & Siniša Djurović, 2023. "Fibre Bragg Grating Sensors for Condition Monitoring of High-Voltage Assets: A Review," Energies, MDPI, vol. 16(18), pages 1-26, September.
    15. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    16. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    17. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    18. Chenmeng Zhang & Kailin Zhao & Shijun Xie & Can Hu & Yu Zhang & Nanxi Jiang, 2021. "Research on the Time-Domain Dielectric Response of Multiple Impulse Voltage Aging Oil-Film Dielectrics," Energies, MDPI, vol. 14(7), pages 1-15, April.
    19. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.
    20. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2002-:d:1071956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.