IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3535-d1694570.html
   My bibliography  Save this article

Multiclass Fault Diagnosis in Power Transformers Using Dissolved Gas Analysis and Grid Search-Optimized Machine Learning

Author

Listed:
  • Andrew Adewunmi Adekunle

    (Canada Research Chair Tier 1, in Aging of Oil-Filled Equipment on High Voltage Lines (ViAHT), University of Quebec at Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Issouf Fofana

    (Canada Research Chair Tier 1, in Aging of Oil-Filled Equipment on High Voltage Lines (ViAHT), University of Quebec at Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Patrick Picher

    (Hydro Quebec Research Institute, Varennes, QC J3X 1S1, Canada)

  • Esperanza Mariela Rodriguez-Celis

    (Hydro Quebec Research Institute, Varennes, QC J3X 1S1, Canada)

  • Oscar Henry Arroyo-Fernandez

    (Hydro Quebec Research Institute, Varennes, QC J3X 1S1, Canada)

  • Hugo Simard

    (Rio Tinto, Saguenay, QC G7S 2H8, Canada)

  • Marc-André Lavoie

    (Rio Tinto, Saguenay, QC G7S 2H8, Canada)

Abstract

Dissolved gas analysis remains the most widely utilized non-intrusive diagnostic method for detecting incipient faults in insulating liquid-immersed transformers. Despite their prevalence, conventional ratio-based methods often suffer from ambiguity and limited potential for automation applicrations. To address these limitations, this study proposes a unified multiclass classification model that integrates traditional gas ratio features with supervised machine learning algorithms to enhance fault diagnosis accuracy. The performance of six machine learning classifiers was systematically evaluated using training and testing data generated through four widely recognized gas ratio schemes. Grid search optimization was employed to fine-tune the hyperparameters of each model, while model evaluation was conducted using 10-fold cross-validation and six performance metrics. Across all the diagnostic approaches, ensemble models, namely random forest, XGBoost, and LightGBM, consistently outperformed non-ensemble models. Notably, random forest and LightGBM classifiers demonstrated the most robust and superior performance across all schemes, achieving accuracy, precision, recall, and F1 scores between 0.99 and 1, along with Matthew correlation coefficient values exceeding 0.98 in all cases. This robustness suggests that ensemble models are effective at capturing complex decision boundaries and relationships among gas ratio features. Furthermore, beyond numerical classification, the integration of physicochemical and dielectric properties in this study revealed degradation signatures that strongly correlate with thermal fault indicators. Particularly, the CIGRÉ-based classification using a random forest classifier demonstrated high sensitivity in detecting thermally stressed units, corroborating trends observed in chemical deterioration parameters such as interfacial tension and CO 2 /CO ratios. Access to over 80 years of operational data provides a rare and invaluable perspective on the long-term performance and degradation of power equipment. This extended dataset enables a more accurate assessment of ageing trends, enhances the reliability of predictive maintenance models, and supports informed decision-making for asset management in legacy power systems.

Suggested Citation

  • Andrew Adewunmi Adekunle & Issouf Fofana & Patrick Picher & Esperanza Mariela Rodriguez-Celis & Oscar Henry Arroyo-Fernandez & Hugo Simard & Marc-André Lavoie, 2025. "Multiclass Fault Diagnosis in Power Transformers Using Dissolved Gas Analysis and Grid Search-Optimized Machine Learning," Energies, MDPI, vol. 18(13), pages 1-30, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3535-:d:1694570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahman Azis Prasojo & Harry Gumilang & Suwarno & Nur Ulfa Maulidevi & Bambang Anggoro Soedjarno, 2020. "A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation," Energies, MDPI, vol. 13(4), pages 1-20, February.
    2. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    3. Youcef Benmahamed & Omar Kherif & Madjid Teguar & Ahmed Boubakeur & Sherif S. M. Ghoneim, 2021. "Accuracy Improvement of Transformer Faults Diagnostic Based on DGA Data Using SVM-BA Classifier," Energies, MDPI, vol. 14(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engin Baker & Secil Varbak Nese & Erkan Dursun, 2023. "Hybrid Condition Monitoring System for Power Transformer Fault Diagnosis," Energies, MDPI, vol. 16(3), pages 1-11, January.
    2. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski & Ravikrishnan Vinu & Zbigniew Nadolny, 2023. "Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications," Energies, MDPI, vol. 16(1), pages 1-15, January.
    3. Yunhe Luo & Xiaosong Zou & Wei Xiong & Xufeng Yuan & Kui Xu & Yu Xin & Ruoyu Zhang, 2023. "Dynamic State Evaluation Method of Power Transformer Based on Mahalanobis–Taguchi System and Health Index," Energies, MDPI, vol. 16(6), pages 1-16, March.
    4. George Kimani Irungu & Aloys Oriedi Akumu, 2020. "Application of Dissolved Gas Analysis in Assessing Degree of Healthiness or Faultiness with Fault Identification in Oil-Immersed Equipment," Energies, MDPI, vol. 13(18), pages 1-24, September.
    5. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    6. Abdessamed Derdour & Hazem Ghassan Abdo & Hussein Almohamad & Abdullah Alodah & Ahmed Abdullah Al Dughairi & Sherif S. M. Ghoneim & Enas Ali, 2023. "Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    7. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    8. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    9. Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.
    10. Xiaoqin Zhang & Hongbin Zhu & Bo Li & Ruihan Wu & Jun Jiang, 2022. "Power Transformer Diagnosis Based on Dissolved Gases Analysis and Copula Function," Energies, MDPI, vol. 15(12), pages 1-14, June.
    11. Esther Ogwa Obebe & Yazid Hadjadj & Samson Okikiola Oparanti & Issouf Fofana, 2025. "Enhancing the Performance of Natural Ester Insulating Liquids in Power Transformers: A Comprehensive Review on Antioxidant Additives for Improved Oxidation Stability," Energies, MDPI, vol. 18(7), pages 1-34, March.
    12. Sergio Bustamante & Mario Manana & Alberto Arroyo & Raquel Martinez & Alberto Laso, 2020. "A Methodology for the Calculation of Typical Gas Concentration Values and Sampling Intervals in the Power Transformers of a Distribution System Operator," Energies, MDPI, vol. 13(22), pages 1-18, November.
    13. Zuhaib Nishter & Fangzong Wang, 2024. "Implementation of Fuzzy Logic Scheme for Assessment of Power Transformer Oil Deterioration Using Imprecise Information," Energies, MDPI, vol. 17(21), pages 1-20, October.
    14. Bonginkosi A. Thango, 2022. "Dissolved Gas Analysis and Application of Artificial Intelligence Technique for Fault Diagnosis in Power Transformers: A South African Case Study," Energies, MDPI, vol. 15(23), pages 1-17, November.
    15. El-Sayed M. El-kenawy & Fahad Albalawi & Sayed A. Ward & Sherif S. M. Ghoneim & Marwa M. Eid & Abdelaziz A. Abdelhamid & Nadjem Bailek & Abdelhameed Ibrahim, 2022. "Feature Selection and Classification of Transformer Faults Based on Novel Meta-Heuristic Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-28, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3535-:d:1694570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.