IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p599-d135413.html
   My bibliography  Save this article

Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication

Author

Listed:
  • Miro Antonijević

    (Končar-Power Plant and Electric Traction Engineering Inc., Fallerovo 22, 10000 Zagreb, Croatia)

  • Stjepan Sučić

    (Končar-Power Plant and Electric Traction Engineering Inc., Fallerovo 22, 10000 Zagreb, Croatia)

  • Hrvoje Keserica

    (Končar-Power Plant and Electric Traction Engineering Inc., Fallerovo 22, 10000 Zagreb, Croatia)

Abstract

Most electrical substations are remotely monitored and controlled by using Supervisory Control and Data Acquisition (SCADA) applications. Current SCADA systems have been significantly enhanced by utilizing standardized communication protocols and the most prominent is the IEC 61850 international standard. These enhancements enable improvements in different domains of SCADA systems such as communication engineering, data management and visualization of automation process data in SCADA applications. Process data visualization is usually achieved through Human Machine Interface (HMI) screens in substation control centres. However, this visualization method sometimes makes supervision, control and maintenance procedures executed by engineers slow and error-prone because it separates equipment from its automation data. Augmented reality (AR) and mixed reality (MR) visualization techniques have matured enough to provide new possibilities of displaying relevant data wherever needed. This paper presents a novel methodology for visualizing process related SCADA data to enhance and facilitate human-centric activities in substations such as regular equipment maintenance. The proposed solution utilizes AR visualization techniques together with standards-based communication protocols used in substations. The developed proof-of-concept AR application that enables displaying SCADA data on the corresponding substation equipment with the help of AR markers demonstrates originality and benefits of the proposed visualization method. Additionally, the application enables displaying widgets and 3D models of substation equipment to make the visualization more user-friendly and intuitive. The visualized SCADA data needs to be refreshed considering soft real-time data delivery restrictions. Therefore, the proposed solution is thoroughly tested to demonstrate the applicability of proposed methodology in real substations.

Suggested Citation

  • Miro Antonijević & Stjepan Sučić & Hrvoje Keserica, 2018. "Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication," Energies, MDPI, vol. 11(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:599-:d:135413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaewan Suh & Sungchul Hwang & Gilsoo Jang, 2017. "Development of a Transmission and Distribution Integrated Monitoring and Analysis System for High Distributed Generation Penetration," Energies, MDPI, vol. 10(9), pages 1-15, August.
    2. Tao Jin & Xueyu Shen, 2018. "A Mixed WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 11(2), pages 1-22, February.
    3. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, vol. 8(10), pages 1-40, October.
    4. Zhengyi Zhu & Bingyin Xu & Christoph Brunner & Tony Yip & Yu Chen, 2017. "IEC 61850 Configuration Solution to Distributed Intelligence in Distribution Grid Automation," Energies, MDPI, vol. 10(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.
    2. Leandro Mattioli & Alexandre Cardoso & Edgard Lamounier, 2020. "2D–3D Spatial Registration for Remote Inspection of Power Substations," Energies, MDPI, vol. 13(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Wydra, 2018. "Performance and Accuracy Investigation of the Two-Step Algorithm for Power System State and Line Temperature Estimation," Energies, MDPI, vol. 11(4), pages 1-20, April.
    2. Lingyan Sun & Yu Chen & Qinjun Du & Rui Ding & Zhidong Liu & Qian Cheng, 2023. "Topology Identification of Low-Voltage Power Lines Based on IEC 61850 and the Clustering Method," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Álvaro Jaramillo-Duque & Nicolás Muñoz-Galeano & José R. Ortiz-Castrillón & Jesús M. López-Lezama & Ricardo Albarracín-Sánchez, 2018. "Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance," Energies, MDPI, vol. 11(2), pages 1-12, February.
    4. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    5. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    6. Dante Ruiz-Robles & Vicente Venegas-Rebollar & Adolfo Anaya-Ruiz & Edgar L. Moreno-Goytia & Juan R. Rodríguez-Rodríguez, 2018. "Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC–DC Converters," Energies, MDPI, vol. 11(8), pages 1-17, August.
    7. Alvaro Carreno & Marcelo Perez & Carlos Baier & Alex Huang & Sanjay Rajendran & Mariusz Malinowski, 2021. "Configurations, Power Topologies and Applications of Hybrid Distribution Transformers," Energies, MDPI, vol. 14(5), pages 1-35, February.
    8. Syahrul Nizam Md Saad & Adriaan Hendrik van der Weijde, 2019. "Evaluating the Potential of Hosting Capacity Enhancement Using Integrated Grid Planning modeling Methods," Energies, MDPI, vol. 12(19), pages 1-23, September.
    9. Xiaowen Wu & Ling Li & Nianguang Zhou & Ling Lu & Sheng Hu & Hao Cao & Zhiqiang He, 2018. "Diagnosis of DC Bias in Power Transformers Using Vibration Feature Extraction and a Pattern Recognition Method," Energies, MDPI, vol. 11(7), pages 1-20, July.
    10. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    11. Gang Liu & Zhi Zheng & Dongwei Yuan & Lin Li & Weige Wu, 2018. "Simulation of Fluid-Thermal Field in Oil-Immersed Transformer Winding Based on Dimensionless Least-Squares and Upwind Finite Element Method," Energies, MDPI, vol. 11(9), pages 1-17, September.
    12. Xiang Gao & C. Adam Schlosser & Eric R. Morgan, 2018. "Potential impacts of climate warming and increased summer heat stress on the electric grid: a case study for a large power transformer (LPT) in the Northeast United States," Climatic Change, Springer, vol. 147(1), pages 107-118, March.
    13. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    14. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    15. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    16. Héctor León & Carlos Montez & Odilson Valle & Francisco Vasques, 2019. "Real-Time Analysis of Time-Critical Messages in IEC 61850 Electrical Substation Communication Systems," Energies, MDPI, vol. 12(12), pages 1-21, June.
    17. Peng Tian & Zetao Li & Zhenghang Hao, 2019. "A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation," Energies, MDPI, vol. 12(23), pages 1-21, November.
    18. Jun Jiang & Mingxin Zhao & Chaohai Zhang & Min Chen & Haojun Liu & Ricardo Albarracín, 2018. "Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer," Energies, MDPI, vol. 11(8), pages 1-13, August.
    19. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    20. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:599-:d:135413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.