IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8593-d706922.html
   My bibliography  Save this article

Augmentation of Heat Transfer in a Circular Channel with Inline and Staggered Baffles

Author

Listed:
  • Muneerah Al Nuwairan

    (Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Basma Souayeh

    (Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
    Laboratory of Fluid Mechanics, Physics Department, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia)

Abstract

This numerical investigation presents the effects of the position of baffles in the shape of a circle’s segment placed inside a circular channel to improve the thermal and flow performance of a solar air heater. Three different baffles’ positions with Reynolds number varying between 10,000 to 50,000 were investigated computationally. The k-omega SST model was used for solving the governing equations. Air was taken as the working fluid. Three pitch ratios (Y = 3, 4, and 5) were considered, while the height of the baffles remained fixed. The result showed an enhancement in Nusselt number, friction factor, j-factor, and thermal performance factor. Staggered exit-length baffles showed maximum enhancement in heat transfer and pressure drop, while inline inlet-length baffles showed the least enhancement. For a pitch ratio of Y = 3.0, the enhancement in all parameters was the highest, while for Y = 5.0, the enhancement in all parameters was the least. The highest thermal performance factor of 1.6 was found for SEL at Y = 3.0.

Suggested Citation

  • Muneerah Al Nuwairan & Basma Souayeh, 2021. "Augmentation of Heat Transfer in a Circular Channel with Inline and Staggered Baffles," Energies, MDPI, vol. 14(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8593-:d:706922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    2. Goel, Varun & Kumar, Rajneesh & Bhattacharyya, Suvanjan & Tyagi, V.V. & Abusorrah, Abdullah M., 2021. "A comprehensive parametric investigation of hemispherical cavities on thermal performance and flow-dynamics in the triangular-duct solar-assisted air-heater," Renewable Energy, Elsevier, vol. 173(C), pages 896-912.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basma Souayeh & Kashif Ali Abro & Suvanjan Bhattacharyya, 2023. "Editorial for the Special Issue “Heat Transfer Enhancement and Fluid Flow Features Due to the Addition of Nanoparticles in Engineering Applications”," Energies, MDPI, vol. 16(5), pages 1-3, February.
    2. Huda Alfannakh & Basma Souayeh & Najib Hdhiri & Muneerah Al Nuwairan & Muayad Al-Shaeli, 2022. "Entropy Generation and Natural Convection Heat Transfer of (MWCNT/SWCNT) Nanoparticles around Two Spaced Spheres over Inclined Plates: Numerical Study," Energies, MDPI, vol. 15(7), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajabdollahi, Hassan, 2021. "Thermoeconomic assessment of integrated solar flat plat collector with cross flow heat exchanger as solar air heater using numerical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 491-504.
    2. Kumar, Amit & Singh, Ajeet Pratap & Akshayveer, & Singh, O.P., 2022. "Performance characteristics of a new curved double-pass counter flow solar air heater," Energy, Elsevier, vol. 239(PA).
    3. Jihu Lee & Sung-Hun Son & Kibum Kim, 2021. "Eco-Friendly and Economical Solar Heater Design Using Internal Structure and Phase Change Materials," Energies, MDPI, vol. 14(21), pages 1-15, November.
    4. Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
    6. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    7. Jadhav, Prakash H. & Gnanasekaran, N. & Mobedi, Moghtada, 2023. "Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger," Energy, Elsevier, vol. 263(PA).
    8. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    9. Farhan, Ammar A. & Issam M.Ali, Aljubury & Ahmed, Hamdi E., 2021. "Energetic and exergetic efficiency analysis of a v-corrugated solar air heater integrated with twisted tape inserts," Renewable Energy, Elsevier, vol. 169(C), pages 1373-1385.
    10. Anirudh, K. & Dhinakaran, S., 2021. "Numerical analysis of the performance improvement of a flat-plate solar collector using conjugated porous blocks," Renewable Energy, Elsevier, vol. 172(C), pages 382-391.
    11. Kumar, Rajneesh & Sharma, Akshay & Goel, Varun & Sharma, Rajesh & Sethi, Muneesh & Tyagi, V.V., 2023. "An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater," Renewable Energy, Elsevier, vol. 211(C), pages 964-974.
    12. Afshari, Faraz & Sözen, Adnan & Khanlari, Ataollah & Tuncer, Azim Doğuş & Şirin, Ceylin, 2020. "Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater," Renewable Energy, Elsevier, vol. 158(C), pages 297-310.
    13. Wang, Kai & Dong, Huzi & Wang, Long & Zhao, Wei & Wang, Yanhai & Guo, Haijun & Zang, Jie & Fan, Long & Zhang, Xiaolei, 2023. "Temperature-induced micropore structure alteration of raw coal and its implications for optimizing the degassing temperature in pore characterization," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8593-:d:706922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.