IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8468-d702954.html
   My bibliography  Save this article

Machine-Learning-Based Condition Assessment of Gas Turbines—A Review

Author

Listed:
  • Martí de Castro-Cros

    (Intelligent Data Science and Artificial Intelligence Research Centre (IDEAI), Automatic Control Department, Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034 Barcelona, Spain)

  • Manel Velasco

    (Intelligent Data Science and Artificial Intelligence Research Centre (IDEAI), Automatic Control Department, Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034 Barcelona, Spain)

  • Cecilio Angulo

    (Intelligent Data Science and Artificial Intelligence Research Centre (IDEAI), Automatic Control Department, Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034 Barcelona, Spain)

Abstract

Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machine-learning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.

Suggested Citation

  • Martí de Castro-Cros & Manel Velasco & Cecilio Angulo, 2021. "Machine-Learning-Based Condition Assessment of Gas Turbines—A Review," Energies, MDPI, vol. 14(24), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8468-:d:702954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco Blasques & Siem Jan Koopman & André Lucas, 2020. "Nonlinear autoregressive models with optimality properties," Econometric Reviews, Taylor & Francis Journals, vol. 39(6), pages 559-578, July.
    2. Linhai Zhu & Jinfu Liu & Yujia Ma & Weixing Zhou & Daren Yu, 2020. "A Coupling Diagnosis Method for Sensor Faults Detection, Isolation and Estimation of Gas Turbine Engines," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    4. Jiao Liu & Jinfu Liu & Daren Yu & Myeongsu Kang & Weizhong Yan & Zhongqi Wang & Michael G. Pecht, 2018. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network," Energies, MDPI, vol. 11(8), pages 1-18, August.
    5. Swanson, Laura, 2001. "Linking maintenance strategies to performance," International Journal of Production Economics, Elsevier, vol. 70(3), pages 237-244, April.
    6. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    7. Sabah Ahmed Abdul-Wahab & Abubaker Sayed Mohamed Omer & Kaan Yetilmezsoy & Majid Bahramian, 2020. "Modelling the clogging of gas turbine filter houses in heavy-duty power generation systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 26(2), pages 119-143, March.
    8. Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
    9. Homam Nikpey Somehsaraei & Susmita Ghosh & Sayantan Maity & Payel Pramanik & Sudipta De & Mohsen Assadi, 2020. "Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning," Energies, MDPI, vol. 13(14), pages 1-15, July.
    10. Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    2. Ayman AboElHassan & Soumaya Yacout, 2023. "A digital shadow framework using distributed system concepts," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3579-3598, December.
    3. Jacek Czyżewicz & Piotr Jaskólski & Paweł Ziemiański & Marian Piwowarski & Mateusz Bortkiewicz & Krzysztof Laszuk & Ireneusz Galara & Marta Pawłowska & Karol Cybulski, 2022. "Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements," Energies, MDPI, vol. 15(7), pages 1-19, March.
    4. Nicola Menga & Akhila Mothakani & Maria Grazia De Giorgi & Radoslaw Przysowa & Antonio Ficarella, 2022. "Extreme Learning Machine-Based Diagnostics for Component Degradation in a Microturbine," Energies, MDPI, vol. 15(19), pages 1-22, October.
    5. Volodymyr Grudz & Yaroslav Grudz & Ivan Pavlenko & Oleksandr Liaposhchenko & Marek Ochowiak & Vasyl Pidluskiy & Oleksandr Portechyn & Mykola Iakymiv & Sylwia Włodarczak & Andżelika Krupińska & Magdale, 2023. "Ensuring the Reliability of Gas Supply Systems by Optimizing the Overhaul Planning," Energies, MDPI, vol. 16(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    2. Wang, Yuqi & Du, Qiuwan & Li, Yunzhu & Zhang, Di & Xie, Yonghui, 2022. "Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques," Energy, Elsevier, vol. 238(PB).
    3. Linhai Zhu & Jinfu Liu & Yujia Ma & Weixing Zhou & Daren Yu, 2020. "A Coupling Diagnosis Method for Sensor Faults Detection, Isolation and Estimation of Gas Turbine Engines," Energies, MDPI, vol. 13(18), pages 1-19, September.
    4. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    5. Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
    6. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    7. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    8. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    9. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    10. José María López-Sanz & Azucena Penelas-Leguía & Pablo Gutiérrez-Rodríguez & Pedro Cuesta-Valiño, 2021. "Sustainable Development and Consumer Behavior in Rural Tourism—The Importance of Image and Loyalty for Host Communities," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    11. Cristina Blasi Casagran & Colleen Boland & Elena Sánchez-Montijano & Eva Vilà Sanchez, 2021. "The Role of Emerging Predictive IT Tools in Effective Migration Governance," Politics and Governance, Cogitatio Press, vol. 9(4), pages 133-145.
    12. Maria Maddalena Sirufo & Francesca De Pietro & Alessandra Catalogna & Lia Ginaldi & Massimo De Martinis, 2021. "The Microbiota-Bone-Allergy Interplay," IJERPH, MDPI, vol. 19(1), pages 1-14, December.
    13. Oleh Pasko & Mykola Hordiyenko & Fuli Chen & Yarmila Tkal & Yulia Abraham, 2021. "Mapping Global Research on International Financial Reporting Standards: A Scientometric Review," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 116-134, May.
    14. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    15. Vitor Hugo Ferreira & André da Costa Pinho & Dickson Silva de Souza & Bárbara Siqueira Rodrigues, 2021. "A New Clustering Approach for Automatic Oscillographic Records Segmentation," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    17. Ines A. Ferreira & Rachel M. Gisselquist & Finn Tarp, 2021. "On the impact of inequality on growth, human development, and governance," WIDER Working Paper Series wp-2021-34, World Institute for Development Economic Research (UNU-WIDER).
    18. He Tingting, 2021. "Comparing Money and Time Donation: What Do Experiments Tell Us?," Marketing of Scientific and Research Organizations, Sciendo, vol. 41(3), pages 65-94, September.
    19. Beatriz Calzada Olvera & Mario Gonzalez-Sauri & Federico Louvin & David-Alexander Harings Moya, 2021. "COVID-19 in Central America: effects of firm resilience and policy responses on employment," WIDER Working Paper Series wp-2021-166, World Institute for Development Economic Research (UNU-WIDER).
    20. Alberto Cerezo-Narváez & Andrés Pastor-Fernández & Manuel Otero-Mateo & Pablo Ballesteros-Pérez, 2022. "The Influence of Knowledge on Managing Risk for the Success in Complex Construction Projects: The IPMA Approach," Sustainability, MDPI, vol. 14(15), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8468-:d:702954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.