IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8278-d698097.html
   My bibliography  Save this article

Numerical Dimensioning of a Pre-Cooler for sCO 2 Power Cycles to Utilize Industrial Waste Heat

Author

Listed:
  • Sebastian Unger

    (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstr. 400, 01328 Dresden, Germany)

  • Jonas Müller

    (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstr. 400, 01328 Dresden, Germany)

  • Malini Bangalore Mohankumar

    (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstr. 400, 01328 Dresden, Germany)

  • Sebastian Rath

    (Chair of Thermal Power Machinery and Plants, Institute of Power Engineering, Technische Universität Dresden, 01062 Dresden, Germany)

  • Uwe Hampel

    (Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstr. 400, 01328 Dresden, Germany
    Chair of Imaging Techniques in Energy and Process Engineering, Institute of Power Engineering, Technische Universität Dresden, 01062 Dresden, Germany)

Abstract

The annual waste heat available from industry in the European Union is more than 2700 PJ. Consequently, the utilization of the unexploited thermal energy will decisively contribute to a reduced overall power consumption and lower greenhouse gas emissions. In the present investigation, a cycle layout, based on supercritical carbon dioxide (sCO 2 ), was applied for a certain waste heat source, a gas compressor station. The boundary conditions determined by the cycle were used by the numerical code ANSYS CFX to design a pre-cooler. Subsequently, this printed circuit heat exchanger was examined for sCO 2 mass fluxes between 100 kg/m²s and 900 kg/m²s. The heat transfer and pressure drop increase as the flow channel diameter is reduced. As the pressure drop of the coolant channel is more sensitive to the diameter, a larger coolant channel diameter is selected to maintain a reasonably low pressure drop. The optimum pre-cooler design consists of a 0.5 mm and 0.8 mm channel diameter for the sCO 2 and coolant channel. Based on these results, internal fins were applied and optimized, to improve the heat transfer performance. An internal fin height of 4 mm was found to achieve the optimum thermal-flow performance for the pre-cooler.

Suggested Citation

  • Sebastian Unger & Jonas Müller & Malini Bangalore Mohankumar & Sebastian Rath & Uwe Hampel, 2021. "Numerical Dimensioning of a Pre-Cooler for sCO 2 Power Cycles to Utilize Industrial Waste Heat," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8278-:d:698097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    2. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    2. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
    3. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    4. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.
    5. Antoine Fontaine & Laurence Rocher, 2021. "Energy recovery on the agenda. Waste heat: a matter of public policy and social science concern," Post-Print halshs-02971862, HAL.
    6. Fabian Bühler & Stefan Petrović & Torben Ommen & Fridolin Müller Holm & Henrik Pieper & Brian Elmegaard, 2018. "Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS," Energies, MDPI, vol. 11(4), pages 1-24, March.
    7. Pili, R. & García Martínez, L. & Wieland, C. & Spliethoff, H., 2020. "Techno-economic potential of waste heat recovery from German energy-intensive industry with Organic Rankine Cycle technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    9. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    10. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    11. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    12. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    13. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    14. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    15. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    16. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    17. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    18. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    19. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    20. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8278-:d:698097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.