IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1069-d1040026.html
   My bibliography  Save this article

Experimental Measurement and Theoretical Prediction of Bubble Growth and Convection Heat Transfer Coefficient in Direct Contact Heat Transfer

Author

Listed:
  • Jun Yang

    (Engineering Research Center of Metallurgical Energy Conservation and Emission Reductio, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
    National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China
    Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
    These authors have contributed equally to this work.)

  • Biao Li

    (Engineering Research Center of Metallurgical Energy Conservation and Emission Reductio, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
    National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China
    Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
    These authors have contributed equally to this work.)

  • Hui Sun

    (Faulty of Science, Kunming University of Science and Technology, Kunming 650093, China)

  • Jianxin Xu

    (Engineering Research Center of Metallurgical Energy Conservation and Emission Reductio, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
    National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China
    Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Hua Wang

    (Engineering Research Center of Metallurgical Energy Conservation and Emission Reductio, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
    National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China
    Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

The measurement of the two-phase contact area is very important to determine the heat transfer coefficient in the process of direct contact heat transfer, but the direct measurement of the two-phase contact area is a difficult problem. The experiments are carried out utilizing a cylindrical Perspex tube of 100 cm in total height and 15 cm inner diameter. The active column height throughout the experiments is taken to be equal to 50 cm. Liquid Therminol ® 66 with four different initial temperatures (50 °C, 60 °C, 70 °C and 80 °C) is used as a continuous phase, while liquid R245fa at a constant temperature of 23 °C is used as a dispersed phase. In this paper, the empirical correlations between bubble growth and local convection heat transfer coefficient are obtained through modeling and measurement, and its correctness is verified by experiments. The results show that the bubble diameter is positively correlated with continuous phase temperature, flow rate ratio, and height, but the local convection heat transfer coefficient is negatively correlated with continuous phase temperature, flow rate ratio, and height. At the same time, it is found that the maximum error between the actual bubble diameter and the theoretical bubble diameter is 7%, and the error between the heat flux calculated by the local convection heat transfer coefficient and the actual heat flux is within 10%. This study provides theoretical guidance for an in-depth understanding of the direct contact heat transfer process and the development of high-efficiency waste heat recovery systems.

Suggested Citation

  • Jun Yang & Biao Li & Hui Sun & Jianxin Xu & Hua Wang, 2023. "Experimental Measurement and Theoretical Prediction of Bubble Growth and Convection Heat Transfer Coefficient in Direct Contact Heat Transfer," Energies, MDPI, vol. 16(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1069-:d:1040026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    2. Fei, Yu & Xiao, Qingtai & Xu, Jianxin & Pan, Jianxin & Wang, Shibo & Wang, Hua & Huang, Junwei, 2015. "A novel approach for measuring bubbles uniformity and mixing efficiency in a direct contact heat exchanger," Energy, Elsevier, vol. 93(P2), pages 2313-2320.
    3. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Yang, Jing & Zhang, Zhiyong & Yang, Mingwan & Chen, Jiayu, 2019. "Optimal operation strategy of green supply chain based on waste heat recovery quality," Energy, Elsevier, vol. 183(C), pages 599-605.
    4. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    5. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    6. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    7. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    8. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    9. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    10. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    11. Bin Yang & Xin Zhu & Boan Wei & Minzhang Liu & Yifan Li & Zhihan Lv & Faming Wang, 2023. "Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review," Energies, MDPI, vol. 16(3), pages 1-24, February.
    12. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    13. Zühlsdorf, Benjamin & Jensen, Jonas Kjær & Cignitti, Stefano & Madsen, Claus & Elmegaard, Brian, 2018. "Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides," Energy, Elsevier, vol. 153(C), pages 650-660.
    14. Dominković, D.F. & Bin Abdul Rashid, K.A. & Romagnoli, A. & Pedersen, A.S. & Leong, K.C. & Krajačić, G. & Duić, N., 2017. "Potential of district cooling in hot and humid climates," Applied Energy, Elsevier, vol. 208(C), pages 49-61.
    15. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    16. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    17. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    18. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    19. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    20. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1069-:d:1040026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.